Infrared (2–12 μm) solid-state laser sources: a review
Tóm tắt
Từ khóa
Tài liệu tham khảo
[1] Solid-State Mid-Infrared Sources (Sorokina, I.T.; Vodopyanov, K.L., eds.), Topics in Applied Physics, vol. 89, Springer, Berlin, Heidelberg, 2003
[2] Wu, J.; Yao, Z.; Zong, J.; Jiang, S. Highly efficient high-power thulium-doped germanate glass fiber laser, Opt. Lett., Volume 32 (2007), pp. 638-640
[3] Lancaster, D.G.; Sabella, A.; Hemming, A.; Bennetts, S.; Jackson, S.D. Power-scalable thulium and holmium fibre lasers pumped by 793 nm diode lasers, Advanced Solid-State Photonics 2007, The Optical Society of America, Washington, 2007 (Technical Digest, WE5)
[4] IPG Photonics http://www.ipgphotonics.com/
[5] Lai, K.S.; Phua, P.B.; Wu, R.F.; Lim, Y.L.; Lau, E.; Toh, S.W.; Toh, B.T.; Chng, A. 120-W continuous-wave diode-pumped Tm:YAG laser, Opt. Lett., Volume 25 (2000), pp. 1591-1593
[6] Dergachev, A.; Wall, K.; Moulton, P.F. A CW side-pumped Tm:YLF laser (Ferman, M.; Marshall, L., eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 68, Optical Society of America, 2002, pp. 343-346
[7] Sullivan, A.C.; Zakel, A.; Wagner, G.J.; Gwin, D.; Tiemann, B.; Stoneman, R.C.; Malm, A.I.R. High power Q-switched Tm:YALO lasers (Quarles, G.J., ed.), Trends in Optics and Photonics, Advanced Solid-State Photonics, vol. 94, Optical Society of America, 2004, pp. 329-332
[8] Eichhorn, M. Development of a high-pulse-energy Q-switched Tm-doped double-clad fluoride fiber laser and its application to the pumping of mid-IR lasers, Opt. Lett., Volume 32 (2007), pp. 1056-1058
[9] Coluccelli, N.; Gatti, D.; Galzerano, G.; Cornacchia, F.; Parisi, D.; Toncelli, A.; Tonelli, M.; Laporta, P. Tunability range of 245 nm in a diode-pumped Tm:BaY2F8 laser at 1.9 μm: a theoretical and experimental investigation, Appl. Phys. B, Volume 85 (2006), pp. 553-555
[10] Pinto, J.F.; Esterowitz, L.; Rosenblatt, G.H. Tm3+:YLF laser continuously tunable between 2.20 and 2.46 μm, Opt. Lett., Volume 19 (1994), pp. 883-885
[11] Stoneman, R.C.; Esterowitz, L. Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG CW lasers, Opt. Lett., Volume 15 (1990), pp. 486-488
[12] Stoneman, R.C.; Esterowitz, L. Efficient 1.94 μm Tm:YALO laser, IEEE J. Sel. Topics Quantum Electron., Volume 1 (1995), pp. 78-80
[13] Fornasiero, L.; Berner, N.; Dicks, B.-M.; Mix, E.; Peters, V.; Petermann, K.; Hubert, G. Broadly tunable laser emission from Tm:Y2O3 and Tm:Sc2O3 at 2 μm (Fejer, M.; Injeyan, H.; Keller, U., eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 26, Optical Society of America, 1999, pp. 450-453
[14] Clarkson, W.A.; Barnes, N.P.; Turner, P.W.; Nilsson, J.; Hanna, D.C. High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm, Opt. Lett., Volume 27 (2002), pp. 1989-1991
[15] Sorokin, E.; Alpatiev, A.N.; Sorokina, I.T.; Zagumennyi, A.I.; Shcherbakov, I.A. Tunable efficient continuous-wave room-temperature Tm3+:GdVO4 laser (Ferman, M.; Marshall, L., eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 68, Optical Society of America, 2002, pp. 347-350
[16] Shen, D.Y.; Sahu, J.K.; Clarkson, W.A.; Nilsson, J.; Hanna, D.C. High-power widely tunable Tm:fibre lasers pumped by an Er, Yb co-doped fibre laser at 1.6 μm, Opt. Express, Volume 14 (2006), pp. 6084-6090
[17] Jean, B.; Bende, T. Mid-IR laser application in medicine (Sorokina, I.T.; Vodopyanov, K.L., eds.), Solid-State Mid-Infrared Sources, Topics in Applied Physics, vol. 89, Springer, Berlin Heidelberg, 2003, pp. 511-544
[18] Yu, J.; Trieu, B.C.; Modlin, E.A.; Singh, U.N.; Kavaya, M.J.; Chen, S.; Bai, Y.; Petzar, P.J.; Petros, M. 1 J/pulse Q-switched 2 μm solid-state laser, Opt. Lett., Volume 31 (2006), pp. 462-464
[19] Fan, T.Y.; Huber, G.; Byer, R.L.; Mitzscherlich, P. Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG, IEEE J. Quantum Electron., Volume 24 (1988), pp. 924-933
[20] Budni, P.A.; Pomeranz, L.A.; Lemons, M.L.; Miller, C.A.; Mosto, J.R.; Chicklis, E.P. Efficient mid-infrared laser using 1.9 μm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators, J. Opt. Soc. Am. B, Volume 17 (2000), pp. 723-728
[21] Lippert, E.; Nicolas, S.; Arisholm, G.; Stenersen, K.; Rustad, G. Midinfrared laser source with high power and beam quality, Appl. Opt., Volume 45 (2006), pp. 3839-3845
[22] Nabors, C.D.; Ochoa, J.; Fan, T.Y.; Sanchez, A.; Choi, H.K.; Tumer, G.W. Ho:YAG laser pumped by 1.9 μm diode lasers, IEEE J. Quantum Electron., Volume 31 (1995), pp. 1603-1605
[23] Dergachev, A.; Moulton, P.; Drake, T.E. High power, high energy Ho:YLF laser pumped with Tm:fiber laser (Denman, C.; Sorokina, I.T., eds.), Trends in Optics and Photonics, Advanced Solid-State Photonics, vol. 98, Optical Society of America, 2005, pp. 608-612
[24] Zavartzev, Y.D.; Osiko, V.V.; Semenkov, S.G.; Studenikin, P.A.; Umyskov, A.F. Cascade laser oscillation due to Ho3+ ions in a (Cr,Yb,Ho):YSGG yttrium–scandium–gallium garnet crystal, Sov. J. Quantum Electron., Volume 23 (1993), pp. 312-316 (transl. from: Kvan. Elektron., 20, 1993, pp. 366-370)
[25] Jackson, S.D. Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 μm, Opt. Lett., Volume 29 (2004), pp. 334-336
[26] Diening, A.; Kück, S. Spectroscopy and diode-pumped laser oscillation of Yb3+, Ho3+-doped yttrium scandium gallium garnet, J. Appl. Phys., Volume 87 (2000), pp. 4063-4068
[27] Zhu, X.; Jain, R. 10-W-level diode-pumped compact 2.78 μm ZBLAN fiber laser, Opt. Lett., Volume 32 (2007), pp. 26-28
[28] Dergachev, A.; Moulton, P. Tunable CW Er:YLF diode-pumped laser, Advanced Solid-State Photonics, Optical Society of America, 2003, pp. 5-7 (Technical Digest)
[29] Zajac, A.; Skorczakowski, M.; Swiderski, J.; Nyga, P. Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications, Opt. Express, Volume 12 (2004), pp. 5125-5130
[30] Voss, H.; Massmann, F. Diode-pumped Q-switched erbium lasers with short pulse duration (Pollock, R.C.; Bosenberg, W.R., eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 10, Optical Society of America, 1997, pp. 217-221
[31] Deloach, L.D.; Page, R.H.; Wilke, G.D.; Payne, S.A.; Krupke, W.F. Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media, IEEE J. Quantum Electron., Volume 32 (1996), pp. 885-895
[32] Sorokina, I.T. Cr2+-doped II–VI materials for lasers and nonlinear optics, Opt. Mat., Volume 26 (2004), pp. 395-412
[33] Sorokin, E.; Naumov, S.; Sorokina, I.T. Ultrabroadband infrared solide-state lasers, IEEE J. Sel. Topics Quantum Electron., Volume 11 (2005), pp. 690-712
[34] Podlipensky, A.V.; Shcherbitsky, V.G.; Kuleshov, N.V.; Levchenko, V.I.; Yakimovich, V.N.; Mond, M.; Heumann, E.; Huber, G.; Kretschmann, H.; Kück, S. Efficient laser operation and continuous-wave diode pumping of Cr2+:ZnSe single crystals, Appl. Phys. B, Volume 72 (2001), pp. 253-255
[35] Mirov, S.B.; Fedorov, V.V.; Graham, K.; Moskalev, I.S.; Badikov, V.V.; Panyutin, V. Erbium fiber laser-pumped continuous-wave microchip Cr2+:ZnS and Cr2+:ZnSe lasers, Opt. Let., Volume 27 (2002), pp. 909-911
[36] Mond, M.; Albrecht, D.; Heumann, E.; Huber, G.; Kück, S.; Levchenko, V.I.; Yakimovich, V.N.; Shcherbitsky, V.G.; Kisel, V.E.; Kuleshov, N.V.; Rattunde, M.; Schmitz, J.; Kiefer, R.; Wagner, J. 1.9 μm and 2.0 μm laser diode pumping of Cr2+:ZnSe and Cr2+:CdMnTe, Opt. Let., Volume 27 (2002), pp. 1034-1036
[37] Demirbas, U.; Sennaroglu, A. Intracavity-pumped Cr2+:ZnSe laser with ultrabroad tuning range between 1880 and 3100 nm, Opt. Lett., Volume 31 (2006), pp. 2293-2295
[38] Sorokina, I.T.; Sorokin, E. Chirped-mirror dispersion controlled femtosecond Cr:ZnSe laser, Advanced Solid-State Photonics, Optical Society of America, 2007 OSA Technical Digest Series (CD), paper WA7
[39] Wagner, G.J.; Carrig, T.J. Power scaling of Cr2+:ZnSe lasers (Marshall, C., ed.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 50, Optical Society of America, 2001, pp. 506-510
[40] Zakel, A.; Wagner, G.J.; Sullivan, A.C.; Wenzel, J.F.; Alford, W.J.; Carrig, T.J. High-brightness, rapidly-tunable Cr:ZnSe lasers (Denman, C.; Sorokina, I.T., eds.), Trends in Optics and Photonics, Advanced Solid-State Photonics, vol. 98, Optical Society of America, 2005, pp. 723-727
[41] Carrig, T.J.; Hankla, A.K.; Wagner, G.J.; Rawle, C.B.; McKinnie, I.T. Tunable infrared laser sources for DIAL (Kamerman, G.W., ed.), Laser Radar Technology and Applications VII, Proc. SPIE, vol. 4723, 2002, pp. 147-155
[42] Sorokin, E.; Sorokina, I.T.; Fischer, C.; Sigrist, M.W. Widely tunable Cr2+:ZnSe laser source for trace-gas sensing (Denman, C.; Sorokina, I.T., eds.), Trends in Optics and Photonics, Advanced Solid-State Photonics, vol. 98, Optical Society of America, 2005, pp. 826-830
[43] Zakel, A.; Wagner, G.J.; Alford, W.J.; Carrig, T.J. High-power, rapidly-tunable ZnGeP2 intracavity optical parametric oscillator, Conference on Lasers and Electro-Optics, Optical Society of America, 2005 (Technical Digest, paper CThY5)
[44] Zakel, A.; Wagner, G.J.; Alford, W.J.; Carrig, T.J. High-power, rapidly tunable dual band CdSe optical parametric oscillator (Denman, C.; Sorokina, I.T., eds.), Trends in Optics and Photonics, Advanced Solid-State Photonics, vol. 98, Optical Society of America, 2005, pp. 433-437
[45] Fedorov, V.V.; Moskalev, I.; Luke, L.; Gallian, A.; Mirov, S.B. Mid-infrared electroluminescence of Cr2+ ions in ZnSe crystals, Advanced Solid-State Photonics, Optical Society of America, 2006 (Technical Digest, WB21)
[46] Jaeck, J.; Haidar, R.; Rosencher, E.; Caes, M.; Tauvy, M.; Collin, S.; Bardou, N.; Pelouard, J.L.; Pardo, F.; Lemasson, P. Room-temperature electroluminescence in the mid-infrared (2–3 μm) from bulk chromium-doped ZnSe, Opt. Lett., Volume 31 (2006), pp. 3051-3053
[47] Fedorov, V.V.; Mirov, S.B.; Gallian, A.; Badikov, D.V.; Frolov, M.P.; Korostelin, Y.V.; Kozlovsky, V.I.; Landman, A.I.; Podmar'kov, Y.P.; Akimov, V.A.; Voronov, A.A. 3.77–5.05 μm tunable solid-state lasers on Fe2+-doped ZnSe crystals operating low and room temperatures, IEEE J. Quantum Electron., Volume 42 (2006), pp. 907-917
[48] Joullié, A.; Christol, P.; Baranov, A.N.; Vicet, A. Mid-infrared 2–5 μm heterojunction laser diodes (Sorokina, I.T.; Vodopyanov, K.L., eds.), Solid-State Mid-Infrared Sources, Topics in Applied Physics, vol. 89, Springer, Berlin, Heidelberg, 2003, pp. 1-59
[49] Garbuzov, D.Z.; Lee, H.; Khalfin, V.; Martinelli, R.; Connolly, J.C.; Belenky, G.L. 2.3–2.7 μm room temperature CW operation of InGaAsSb–AlGaAsSb broad waveguide SCH-QW diode lasers, IEEE Photon. Technol. Lett., Volume 11 (1999), pp. 794-796
[50] Choi, H.K.; Turner, G.W.; Eglash, S.J. High-power GaInAsSb–AlGaAsSb multiple-quantum-well diode lasers emitting at 1.9 μm, IEEE Photon. Technol. Lett., Volume 6 (1994), pp. 7-9
[51] Garbuzov, D.Z.; Martinelli, R.U.; Lee, H.; Menna, R.J.; York, P.K.; DiMarco, L.A.; Harvey, M.G.; Matarese, R.J.; Narayan, S.Y.; Connolly, J.C. 4 W quasi-continuous-wave output power from 2 μm AlGaAsSb/InGaAsSb single-quantum-well broadened waveguide laser diodes, Appl. Phys. Lett., Volume 70 (1997), pp. 2931-2933
[52] Kim, J.G.; Shterengasa, L.; Martinelli, R.U.; Belenky, G.L.; Garbuzov, D.Z.; Chan, W.K. Room-temperature 2.5 μm InGaAsSb/AlGaAsSb diode lasers emitting 1 W continuous waves, Appl. Phys. Lett., Volume 81 (2002), pp. 3146-3148
[53] Garcia, M.; Salhi, A.; Pérona, A.; Rouillard, Y.; Sirtori, C.; Marcadet, X.; Alibert, C. Low threshold high-power room-temperature continuous-wave operation diode laser emitting at 2.26 μm, IEEE Photon. Technol. Lett., Volume 16 (2004), pp. 1253-1255
[54] Belenky, G.L.; Kim, J.G.; Shterengas, L.; Gourevitch, A.; Martinelli, R.U. High-power 2.3 μm laser arrays emitting 10 W CW at room temperature, Electron. Lett., Volume 40 (2004), pp. 737-738
[55] Kelemen, M.T.; Weber, J.; Rattunde, M.; Kaufel, G.; Schmitz, J.; Moritz, R.; Mikulla, M.; Wagner, J. High-power 1.9 μm diode laser arrays with reduced far-field angle, IEEE Photon. Technol. Lett., Volume 18 (2006), pp. 628-630
[56] Choi, H.K.; Walpole, J.N.; Turner, G.W.; Connors, M.K.; Missaggia, L.J.; Manfra, M.J. GaInAsSb–AlGaAsSb tapered lasers emitting at 2.05 μm with 0.6-W diffraction-limited power, IEEE Photon. Technol. Lett., Volume 10 (1998), pp. 938-940
[57] Pfahler, C.; Kaufel, G.; Kelemen, M.T.; Mikulla, M.; Rattunde, M.; Schmitz, J.; Wagner, J. GaSb-based tapered diode lasers at 1.93 μm with 1.5-W nearly diffraction-limited power, IEEE Photon. Technol. Lett., Volume 18 (2006), pp. 758-760
[58] Walpole, J.N.; Choi, H.K.; Missaggia, L.J.; Liau, Z.L.; Connors, M.K.; Turner, G.W.; Manfra, M.J.; Cook, C.C. High-power high-brightness GaInAsSb–AlGaAsSb tapered laser arrays with anamorphic collimating lenses emitting at 2.05 μm, IEEE Photon. Technol. Lett., Volume 11 (1999), pp. 1223-1225
[59] Geerlings, E.; Rattunde, M.; Schmitz, J.; Kaufel, G.; Zappe, H.; Wagner, J. Widely tunable GaSb-based external cavity diode laser emitting around 2.3 μm, IEEE Photon. Technol. Lett., Volume 18 (2006), pp. 1913-1915
[60] Hümmer, M.; Rößner, K.; Benkert, A.; Forchel, A. GaInAsSb–AlGaAsSb distributed feedback lasers emitting near 2.4 μm, IEEE Photon. Technol. Lett., Volume 16 (2004), pp. 380-382
[61] Sirtori, C.; Nagle, J. Quantum cascade lasers: the quantum technology for semiconductor lasers in the mid-far-infrared, C. R. Physique, Volume 4 (2003), pp. 639-648
[62] Hofstetter, D.; Faist, J. High performances quantum cascade lasers and their applications (Sorokina, I.T.; Vodopyanov, K.L., eds.), Solid-State Mid-Infrared Sources, Topics in Applied Physics, vol. 89, Springer, Berlin, Heidelberg, 2003, pp. 61-96
[63] Capasso, F.; Gmachl, C.; Paiella, R.; Tredicucci, A.; Hutchinson, A.L.; Sivco, D.L.; Baillargeon, J.N.; Cho, A.Y.; Liu, H.C. New frontiers in quantum cascade lasers and applications, IEEE J. Sel. Topics Quantum Electron., Volume 6 (2000), pp. 931-947
[64] Vurgaftman, I.; Meyer, J.R. Analysis of limitations to wallplug efficiency and output power for quantum cascade lasers, J. Appl. Phys., Volume 99 (2006), p. 123108
[65] Slivken, S.; Huang, Z.; Evans, A.; Razeghi, M. High-power (λ≃9 μm) quantum cascade lasers, Appl. Phys. Lett., Volume 80 (2002), pp. 4091-4093
[66] Forget, S.; Faugeras, C.; Bengloan, J.-Y.; Calligaro, M.; Parillaud, O.; Giovannini, M.; Faist, J.; Sirtori, C. High-power spatial singlemode quantum cascade lasers at 8.9 μm, Electron. Lett., Volume 41 (2005), pp. 418-419
[67] Hofstetter, D.; Beck, M.; Aellen, T.; Faist, J.; Oesterle, U.; Ilegems, M.; Gini, E.; Melchior, H. Continuous wave operation of a 9.3 μm quantum cascade laser on Peltier cooler, Appl. Phys. Lett., Volume 78 (2001), pp. 1964-1966
[68] Yu, J.S.; Slivken, S.; Evans, A.; Doris, L.; Razeghi, M. High-power continuous-wave operation of a 6 μm quantum-cascade laser at room temperature, Appl. Phys. Lett., Volume 83 (2003), pp. 2503-2505
[69] Yu, J.S.; Evans, A.; David, J.; Doris, L.; Slivken, S.; Razeghi, M. Cavity-length effects of high-temperature high-power continuous-wave characteristics in quantum-cascade lasers, Appl. Phys. Lett., Volume 83 (2003), pp. 5136-5138
[70] S. Blaser, High power and single frequency quantum cascade lasers for chemical sensing, in: 4th Workshop on Quantum Cascade Lasers, Technology and Applications, Freiburg, Germany, 2005
[71] Evans, A.; Yu, J.S.; Slivken, S.; Razeghi, M. Continuous-wave operation of λ≃4.8 μm quantum cascade lasers, Appl. Phys. Lett., Volume 85 (2004), pp. 2166-2168
[72] Yu, J.S.; Evans, A.; David, J.; Doris, L.; Slivken, S.; Razeghi, M. High-power continuous-wave operation of quantum-cascade lasers up to 60 °C, IEEE Photon. Technol. Lett., Volume 16 (2004), pp. 747-749
[73] Evans, A.; Yu, J.S.; David, S.J.; Doris, L.; Mi, K.; Slivken, S.; Razeghi, M. High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers, Appl. Phys. Lett., Volume 84 (2004), pp. 314-316
[74] Yu, J.S.; Evans, A.; Slivken, S.; Darvish, S.R.; Razeghi, M. Short wavelength (λ≃4.3 μm) high-performance continuous-wave quantum-cascade lasers, IEEE Photon. Technol. Lett., Volume 17 (2005), pp. 1154-1156
[75] Bewley, W.W.; Lindle, J.R.; Kim, C.S.; Vurgaftman, I.; Meyer, J.R.; Evans, A.J.; Yu, J.S.; Slivken, S.; Razeghi, M. Beam steering in high-power CW quantum-cascade lasers, IEEE J. Quantum Electron., Volume 41 (2005), pp. 833-841
[76] Faugeras, C.; Forget, S.; Boer-Duchemin, E.; Page, H.; Bengloan, J.-Y.; Parillaud, O.; Calligaro, M.; Sirtori, C.; Giovannini, M.; Faist, J. High-power room temperature emission quantum cascade lasers at λ=9 μm, IEEE J. Quantum Electron., Volume 41 (2005), pp. 1430-1438
[77] Evans, A.; Nguyen, J.; Slivken, S.; Yu, J.S.; Darvish, S.R.; Razeghi, M. Quantum-cascade lasers operating in continuous-wave mode above 90 °C at λ≃5.25 μm, Appl. Phys. Lett., Volume 88 (2006), p. 051105
[78] Yu, J.S.; Slivken, S.; Evans, A.; Darvish, S.R.; Nguyen, J.; Razeghi, M. High-power λ≃9.5 μm quantum-cascade lasers operating above room temperature in continuous-wave mode, Appl. Phys. Lett., Volume 88 (2006), p. 091113
[79] Diehl, L.; Bour, D.; Corzine, S.; Zhu, J.; Höfler, G.; Lončar, M.; Troccoli, M.; Capasso, F. High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K, Appl. Phys. Lett., Volume 88 (2006), p. 201115
[80] Yu, J.S.; Evans, A.; Slivken, S.; Darvish, S.R.; Razeghi, M. Temperature dependent characteristics of λ≃3.8 μm room-temperature continuous-wave quantum-cascade lasers, Appl. Phys. Lett., Volume 88 (2006), p. 251118
[81] Wittmann, A.; Giovannini, M.; Faist, J.; Hvozdara, L.; Blaser, S.; Hofstetter, D.; Gini, E. Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies, Appl. Phys. Lett., Volume 89 (2006), p. 141116
[82] Slivken, S.; Evans, A.; Zhang, W.; Razeghi, M. High-power, continuous-operation intersubband laser for wavelengths greater than 10 μm, Appl. Phys. Lett., Volume 90 (2007), p. 151115
[83] Maulini, R.; Yarekha, D.A.; Bulliard, J.-M.; Giovannini, M.; Faist, J.; Gini, E. Continuous-wave operation of a broadly tunable thermoelectrically cooled external cavity quantum-cascade laser, Opt. Lett., Volume 30 (2006), pp. 2584-2587
[84] Kennedy, K.; Krysa, A.B.; Roberts, J.S.; Groom, K.M.; Hogg, R.A.; Revin, D.G.; Wilson, L.R.; Cockburn, J.W. High performance InP-based quantum cascade distributed feedback lasers with deeply etched lateral gratings, Appl. Phys. Lett., Volume 89 (2006), p. 201117
[85] Bauer, C.; Geiser, P.; Burgmeier, J.; Holl, G.; Schade, W. Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives, Appl. Phys. B, Volume 85 (2006), pp. 251-256
[86] Vodopyanov, K.L. Mid-infrared optical parametric generator with extra-wide (3–19 μm) tunability: applications for spectroscopy of two-dimensional electrons in quantum wells, J. Opt. Soc. Am. B, Volume 16 (1999), pp. 1579-1586
[87] Myers, L.E.; Eckardt, R.C.; Fejer, M.M.; Byer, R.L.; Bosenberg, W.R.; Pierce, J.W. Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3, J. Opt. Soc. Am. B, Volume 12 (1995), pp. 2102-2116
[88] Koch, K.; Moore, G.T.; Cheungy, E.C. Optical parametric oscillation with intracavity difference-frequency mixing, J. Opt. Soc. Am. B, Volume 12 (1995), pp. 2268-2273
[89] Melkonian, J.-M.; Godard, A.; Lefebvre, M.; Rosencher, E. Pulsed optical parametric oscillators with intracavity optical parametric amplification: a critical study, Appl. Phys. B, Volume 86 (2007), pp. 633-642
[90] Fukumoto, J.M.; Komine, H.; Long, W.H. Jr.; Stappaerts, E.A. Periodically poled LiNbO3 optical parametric oscillator with intracavity difference frequency mixing (Bosenberg, W.R.; Fejer, M.M., eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 19, Optical Society of America, 1998, pp. 245-248
[91] Scherrer, B.; Ribet, I.; Godard, A.; Rosencher, E.; Lefebvre, M. Dual-cavity doubly resonant optical parametric oscillators: demonstration of pulsed single-mode operation, J. Opt. Soc. Am. B, Volume 17 (2000), pp. 1716-1729
[92] Desormeaux, A.; Lefebvre, M.; Rosencher, E.; Huignard, J.-P. Mid-infrared high-resolution absorption spectroscopy by use of a semimonolithic entangled-cavity optical parametric oscillator, Opt. Lett., Volume 29 (2004), pp. 2887-2889
[93] Berrou, A.; Godard, A.; Rosencher, E.; Lefebvre, M.; Spiekermann, S. Mid-IR entangled-cavity doubly resonant OPO pumped by a micro-laser, Conference on Lasers and Electro-Optics, Optical Society of America, 2007 (Technical Digest, paper CThL6)
[94] Berrou, A.; Godard, A.; Lefebvre, M. Mid-IR entangled-cavity doubly resonant OPO pumped by a micro-laser, Conference on Lasers and Electro-Optics, Optical Society of America, 2007 (Technical Digest, paper CThL6)
[95] Ishizuki, H.; Taira, T. High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5 mm×5 mm aperture, Opt. Lett., Volume 30 (2005), pp. 2918-2920
[96] Mennerat, G.; Kupecek, P. High-energy narrow-linewidth tunable source in the mid infrared (Bosenberg, W.R.; Fejer, M.M., eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 19, Optical Society of America, 1998, pp. 269-272
[97] Saikawa, J.; Fujii, M.; Ishizuki, H.; Taira, T. 52 mJ narrow-bandwidth degenerated optical parametric system with a large-aperture periodically poled MgO:LiNbO3 device, Opt. Lett., Volume 31 (2006), pp. 3149-3151
[98] Saikawa, J.; Miyazaki, M.; Fujii, M.; Ishizuki, H.; Taira, T. Difference frequency generation in a ZnGeP2 crystal pumped by a large aperture periodically poled MgO:LiNbO3 optical parametric system, Advanced Solid-State Photonics 2007, The Optical Society of America, Washington, 2007 (Technical Digest, MB8)
[99] Henriksson, M.; Tiihonen, M.; Pasiskevicius, V.; Laurell, F. ZnGeP2 parametric oscillator pumped by a linewidth-narrowed parametric 2 μm source, Opt. Lett., Volume 31 (2006), pp. 1878-1880
[100] Nicolas, S.; Nordseth, Ø.; Rustad, G.; Arisholm, G. High-energy mid-IR source based on two-stage conversion from 1.06 μm (Denman, C.; Sorokina, I.T., eds.), Trends in Optics and Photonics, Advanced Solid-State Photonics, vol. 98, Optical Society of America, 2005, pp. 417-422
[101] Shori, R.K. Recent developments in scaling output energy from erbium-based lasers and their uses as pump sources for MWIR & LWIR OPOs, Laser and Electro-Optics Society Annual Meeting 2004 Conference Proceedings, vol. 2, IEEE, 2004, pp. 805-806
[102] Allik, T.H.; Ahl, J.L.; Chandra, S.; Hutchinson, J.A.; Hovis, W.W.; Fox, J.; Newman, L. Refinements and additional characterization of an 8–12 μm tandem OPO design (Fejer, M.; Injeyan, H.; Keller, U., eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 26, Optical Society of America, 1999, pp. 525-528
[103] R.K. Shori, O.M. Stafsudd, N.S. Prasad, G. Catella, High energy AgGaSe2 optical parametric oscillator operating in 5.7–7 μm region, in: Nonlinear Optics: Materials, Fundamentals, and Applications, 2000, pp. 179–181, Technical Digest
[104] Chandra, S.; Allik, T.H.; Catella, G.; Hutchinson, J.A. Tunable output around 8 μm from a single step AgGaS2 OPO pumped at 1.064 μm (Bosenberg, W.R.; Fejer, M.M., eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 19, Optical Society of America, 1998, pp. 282-284
[105] Schunemann, P.G.; Setzler, S.D.; Mohnkern, L.; Pollak, T.M.; Bliss, D.F.; Weyburne, D.; O'Hearn, K. 2.05-μm-laser-pumped orientation-patterned gallium arsenide (OPGaAs) OPO, Conference on Lasers and Electro-Optics, Optical Society of America, 2005 (Technical Digest, paper CThQ4)
[106] P.G. Schunemann, Advances in NLO crystals for infrared parametric sources, Oral presentation given at Journées Scientifiques de l'ONERA (2007)
[107] Budni, P.A.; Knights, M.G.; Chicklis, E.P.; Schepler, K.L. Kilohertz AgGaSe2 optical parametric oscillator pumped at 2 μm, Opt. Lett., Volume 18 (1993), pp. 1068-1070
[108] Vodopyanov, K.L.; Ganikhanov, F.; Maffetone, J.P.; Zwieback, I.; Ruderman, W. ZnGeP2 optical parametric oscillator with 3.8–12.4 μm tunability, Opt. Lett., Volume 25 (2000), pp. 841-843
[109] Allik, T.H.; Chandra, S.; Rines, D.M.; Schunemann, P.G.; Hutchinson, J.A.; Utano, R. Tunable 7–12 μm optical parametric oscillator using a Cr,Er:YSGG laser to pump CdSe and ZnGeP2 crystals, Opt. Lett., Volume 22 (1997), pp. 597-599
[110] Isyanova, Y.; Dergachev, A.; Welford, D.; Moulton, P.F. Multi-wavelength, 1.5–10 μm tunable, tandem OPO (Fejer, M.; Injeyan, H.; Keller, U., eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 26, Optical Society of America, 1999, pp. 548-553
[111] Vodopyanov, K.L.; Levi, O.; Kuo, P.S.; Pinguet, T.J.; Harris, J.S.; Fejer, M.M.; Gerard, B.; Becouarn, L.; Lallier, E. Optical parametric oscillation in quasi-phase-matched GaAs, Opt. Lett., Volume 29 (2004), pp. 1912-1914
