Information consistency of the Jeffreys power-expected-posterior prior in Gaussian linear models

Springer Science and Business Media LLC - Tập 75 - Trang 371-380 - 2017
Dimitris Fouskakis1, Ioannis Ntzoufras2
1Department of Mathematics, National Technical University of Athens, Athens, Greece
2Department of Statistics, Athens University of Economics and Business, Athens, Greece

Tóm tắt

Power-expected-posterior (PEP) priors have been recently introduced as generalized versions of the expected-posterior-priors (EPPs) for variable selection in Gaussian linear models. They are minimally-informative priors that reduce the effect of training samples under the EPP approach, by combining ideas from the power-prior and unit-information-prior methodologies. In this paper we prove the information consistency of the PEP methodology, when using the independence Jeffreys as a baseline prior, for the variable selection problem in normal linear models.

Tài liệu tham khảo

Bartlett, M.: Comment on D.V. Lindley’s statistical paradox. Biometrika 44, 533–534 (1957) Bayarri, M., Berger, J., Forte, A., García-Donato, G.: Criteria for Bayesian model choice with application to variable selection. Ann. Stat. 40, 1550–1577 (2012) Berger, J., Pericchi, L.: The intrinsic Bayes factor for linear models. In: Bernardo, J., Berger, J., Dawid, A., Smith, A. (eds.) Bayesian Statistics, vol. 5, pp. 25–44. Oxford University Press, Oxford (1996a) Berger, J., Pericchi, L.: The intrinsic Bayes factor for model selection and prediction. J. Am. Stat. Assoc. 91, 109–122 (1996b) Berger, J., Pericchi, L.: Training samples in objective model selection. Ann. Stat. 32, 841–869 (2004) Casella, G., Girón, F., Martínez, M., Moreno, E.: Consistency of Bayesian procedures for variable selection. Ann. Stat. 37, 1207–1228 (2009) Casella, G., Moreno, E.: Objective Bayesian variable selection. J. Am. Stat. Assoc. 101, 157–167 (2006) Consonni, G., Veronese, P.: Compatibility of prior specifications across linear models. Stat. Sci. 23(3), 332–353 (2008) Fouskakis, D., Ntzoufras, I., Draper, D.: Power-expected-posterior priors for variable selection in Gaussian linear models. Bayesian Anal. 10, 75–107 (2015) Good, I.: Probability and the Weighting of Evidence. Haffner, New York (2004) Ibrahim, J., Chen, M.: Power prior distributions for regression models. Stat. Sci. 15, 46–60 (2000) Iwaki, K.: Posterior expected marginal likelihood for testing hypotheses. J. Econ. Asia Univ. 21, 105–134 (1997) Kass, R., Wasserman, L.: A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion. J. Am. Stat. Assoc. 90, 928–934 (1995) Liang, F., Paulo, R., Molina, G., Clyde, M., Berger, J.: Mixtures of g priors for Bayesian variable selection. J. Am. Stat. Assoc. 103, 410–423 (2008) Moreno, E., Girón, F.: Comparison of Bayesian objective procedures for variable selection in linear regression. Test 17, 472–490 (2008) Moreno, E., Girón, F., Casella, G.: Posterior model consistency in variable selection as the model dimension grows. Stat. Sci. 30, 228–241 (2015) O’Hagan, A.: Fractional Bayes factors for model comparison. J. R. Stat. Soc. B 57, 99–138 (1995) Pérez, J., Berger, J.: Expected-posterior prior distributions for model selection. Biometrika 89, 491–511 (2002) Raftery, A.: Approximate Bayes factors and accounting for model uncertainty in generalized linear models. Biometrika 83, 251–266 (1996) Spiegelhalter, D., Smith, A.: Bayes factors for linear and log-linear models with vague prior information. J. R. Stat. Soc. B 44, 377–387 (1988) Zellner, A.: Bayesian and non-Bayesian analysis of the regression model with multivariate student-t error terms. J. Am. Stat. Assoc. 71, 400–405 (1976) Zellner, A., Siow, A.: Posterior odds ratios for selected regression hypothesis (with discussion). In: Bernardo, J.M., DeGroot, M.H., Lindley, D.V., Smith, A.F.M. (eds.), Bayesian Statistics, Vol. 1, pp. 585–606 and 618–647. Oxford University Press, Oxford (1980) (Discussion)