Information Geometric Approach to Multisensor Estimation Fusion

IEEE Transactions on Signal Processing - Tập 67 Số 2 - Trang 279-292 - 2019
Mengjiao Tang1, Yao Rong2, Jie Zhou2, X. Rong Li3
1Xi'an Jiaotong University, Xi'an, Shaanxi, CN
2Sichuan University, Chengdu, Sichuan, CN
3University of New Orleans, New Orleans, LA, US

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1007/s10851-013-0466-z

imai, 2011, Remarks on geodesics for multivariate normal models, Indust Math, 3, 125

postnikov, 1967, The Variational Theory of Geodesics

10.1007/978-3-319-07779-6

takatsu, 2011, Wasserstein geometry of Gaussian measures, Osaka J Math, 48, 1005

eilders, 2012, Decentralized Riemannian particle filtering with applications to multi-agent localization

calvo, 1991, An explicit solution of information geodesic equations for the multivariate normal model, Statist Decis, 9, 119

eriksen, 1987, Geodesics connected with the Fisher metric on the multivariate normal manifold, Geometrization of Statistical Theory Proceedings of the GST Workshop, 225

skovgaard, 1984, A Riemannian geometry of the multivariate normal model, Scandinavian J Statist, 11, 211

10.1007/978-1-4757-2201-7

10.2140/pjm.1966.16.1

cover, 2006, Elements of Information Theory

10.1007/978-3-319-25040-3_65

jost, 2011, Riemannian Geometry and Geometric Analysis, 10.1007/978-3-642-21298-7

darling, 1998, Geometrically intrinsic nonlinear recursive filters I: Algorithms

10.1137/S0895479803436937

10.1016/j.inffus.2012.02.005

petersen, 2012, The matrix cookbook

darling, 1998, Geometrically intrinsic nonlinear recursive filters II: Foundations

liggins, 2009, Handbook of Multisensor Data Fusion Theory and Practice

tang, 0, Information-geometric methods for distributed multi-sensor estimation fusion, Proc 19th Int Conf Inf Fusion, 1585

wang, 0, Distributed estimation fusion under unknown cross-correlation: An analytic center approach, Proc 13th Int Conf Inf Fusion, 1

garcía, 2006, What does intrinsic mean in statistical estimation?, Statist Oper Res Trans, 30, 125

10.1016/j.dam.2014.10.004

sim, 2012, Information geometry and sequential Monte Carlo samplers

10.2307/3318651

10.1016/0893-6080(95)00003-8

10.1109/72.125867

10.1109/RADAR.2008.4721049

?encov, 1982, Statistical Decision Rules and Optimal Inference

10.1016/S0377-0427(01)00584-2

10.1016/0047-259X(90)90026-E

10.1109/JSTSP.2013.2261798

10.1109/LSP.2016.2594149

10.1109/CVPR.2008.4587747

10.1007/BF02915437

10.1007/s10851-006-6228-4

10.1007/BF02595734

10.1117/12.395064

10.1109/ICIF.2002.1021196

10.1109/IRS.2016.7497346

wang, 0, A fast and fault-tolerant convex combination fusion algorithm under unknown cross-correlation, Proc 12th Int Conf Inform Fusion, 571

10.1016/j.automatica.2013.11.042

10.1109/NSSPW.2006.4378844

battistelli, 2011, An information-theoretic approach to distributed state estimation, IFAC Proc Volumes, 44, 12477, 10.3182/20110828-6-IT-1002.01998

bailey, 0, On conservative fusion of information with unknown non-Gaussian dependence, Proc 15th Int Conf Inf Fusion, 1876

bishop, 0, Information fusion via the Wasserstein barycenter in the space of probability measures: Direct fusion of empirical measures and Gaussian fusion with unknown correlation, Proc 17th Int Conf Inf Fusion, 1

duan, 0, Multi-sensor distributed estimation fusion using minimum distance sum, Proc 17th Int Conf Inf Fusion, 1

10.1109/TSP.2007.908945

10.1109/TAC.1981.1102635

waltz, 1990, Multisensor Data Fusion

10.1109/TIT.2003.815774

10.1109/TAES.1986.310815

10.1109/TAES.2012.6129634

10.1109/ACC.1997.609105

10.1109/ICIF.2006.301755

10.1109/LSP.2015.2390417

10.2307/2695553

10.1007/s10851-006-6897-z

10.1016/j.laa.2005.08.025

10.1007/978-3-642-30232-9_2

burbea, 1986, Informative geometry of probability spaces, Expositiones Mathematicae, 4, 347

10.2307/2532860

eisenhart, 1940, An Introduction to Differential Geometry with Use of the Tensor Calculus

amari, 2000, Methods of Information Geometry