Influences of water and salt contents on the thermal conductivity of loess
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abu-Hamdeh NH, Reeder CR, Khdair AI, Al-Jalil HF (2000) Thermal conductivity of disturbed soils under laboratory conditions. Transactions of the ASAE 43:855–860. https://doi.org/10.13031/2013.2980
Akrouch GA, Sánchez M, Briaud J-L (2014) Thermo-mechanical behavior of energy piles in high plasticity clays. Acta Geotech 9:399–412. https://doi.org/10.1007/s11440-014-0312-5
Al-Ajlan SA (2006) Measurements of thermal properties of insulation materials by using transient plane source technique. Appl Therm Eng 26:2184–2191. https://doi.org/10.1016/j.applthermaleng.2006.04.006
Astm SD (2010) Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. Astm.
Barry-Macaulay D, Bouazza A, Wang B, Singh RM (2015) Evaluation of soil thermal conductivity models. Can Geotech J 52:1892–1900. https://doi.org/10.1139/cgj-2014-0518
Bovesecchi G, Coppa P (2013) Basic Problems in thermal-conductivity measurements of soils. Int J Thermophys 34:1962–1974. https://doi.org/10.1007/s10765-013-1503-2
Bovesecchi G, Coppa P, Potenza M (2017) A numerical model to explain experimental results of effective thermal conductivity measurements on unsaturated soils. Int J Thermophys 38:68. https://doi.org/10.1007/s10765-017-2202-1
Campbell GS (1985) Soil physics with BASIC. Elsevier, Amsterdam, pp 221–234
Chu Y, Liu S, Bate B, Xu L (2018) Evaluation on expansive performance of the expansive soil using electrical responses. J Appl Geophys 148:265–271. https://doi.org/10.1016/j.jappgeo.2017.12.001
Cohen E, Glicksman L (2014) Analysis of the transient hot-wire method to measure thermal conductivity of silica aerogel: influence of wire length, and radiation properties. J Heat Transfer 136:041301. https://doi.org/10.1115/1.4025921
Corasaniti S, Gori F (2002) Theoretical prediction of the soil thermal conductivity at moderately high temperatures. J Heat Transfer 124:1001–1008. https://doi.org/10.1115/1.1513573
Cosenza P, Guérin R, Tabbagh A (2003) Relationship between thermal conductivity and water content of soils using numerical modelling. Eur J Soil Sci 54:581–588. https://doi.org/10.1046/j.1365-2389.2003.00539.x
Dehghanpoor Abyaneh S, Wong HS, Buenfeld NR (2013) Modelling the diffusivity of mortar and concrete using a three-dimensional mesostructure with several aggregate shapes. Comput Mater Sci 78:63–73. https://doi.org/10.1016/j.commatsci.2013.05.024
Dong Y, McCartney JS, Lu N (2015) Critical review of thermal conductivity models for unsaturated soils. Geotech Geol Eng 33:207–221. https://doi.org/10.1007/s10706-015-9843-2
Duan Z, Cheng WC, Peng JB, Wang QY, Chen W (2019) Investigation into the triggering mechanism of loess landslides in the south Jingyang platform, Shaanxi province. Bull Eng Geol Env 78:4919–4930. https://doi.org/10.1007/s10064-018-01432-8
Duan Z, Cheng WC, Peng JB, Rahman MM, Tang H (2020a) Interactions of landslide deposit with terrace sediments: perspectives from velocity of deposit movement and apparent friction angle. Eng Geol 105913. https://doi.org/10.1016/j.enggeo.2020.105913
Duan Z, Wu YB, Tang H, Ma JQ, Zhu XH (2020b) An analysis of factors affecting flowslide deposit morphology using taguchi method. Advances in Civil Engineering 2020:8844722. https://doi.org/10.1155/2020/8844722
Gangadhara Rao M, Singh DN (1999) A generalized relationship to estimate thermal resistivity of soils. Can Geotech J 36:767–773. https://doi.org/10.1139/t99-037
Gautam PK, Verma AK, Singh TN, Hu W, Singh KH (2019) Experimental investigations on the thermal properties of Jalore granitic rocks for nuclear waste repository. Thermochim Acta 681:178381. https://doi.org/10.1016/j.tca.2019.178381
Gustafsson SE (1991) Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev Sci Instrum 62:797–804. https://doi.org/10.1063/1.1142087
He H, Zhao Y, Dyck MF, Si B, Jin H, Lv J, Wang J (2017) A modified normalized model for predicting effective soil thermal conductivity. Acta Geotech 12:1281–1300. https://doi.org/10.1007/s11440-017-0563-z
Hiraiwa Y, Kasubuchi T (2000) Temperature dependence of thermal conductivity of soil over a wide range of temperature (5–75 °C). Eur J Soil Sci 51:211–218. https://doi.org/10.1046/j.1365-2389.2000.00301.x
Jia GS, Tao ZY, Meng XZ, Ma CF, Chai JC, Jin LW (2019) Review of effective thermal conductivity models of rock-soil for geothermal energy applications. Geothermics 77:1–11. https://doi.org/10.1016/j.geothermics.2018.08.001
Ju Z, Ren T, Hu C (2011) Soil thermal conductivity as influenced by aggregation at intermediate water contents. Soil Sci Soc Am J 75:26–29. https://doi.org/10.2136/sssaj2010.0050N
Kang M, Lee JS (2015) Evaluation of the freezing–thawing effect in sand–silt mixtures using elastic waves and electrical resistivity. Cold Reg Sci Technol 113:1–11. https://doi.org/10.1016/j.coldregions.2015.02.004
Kersten MS (1949) Laboratory research for the determination of the thermal properties of soils: final report. University of Minnesota Engineering Experiment Station. Bulletin 1949. No. 28
Kosior-Kazberuk M, Ezerskiy V (2011) Mathematical modelling of thermal conductivity process in salt-contaminated wall materials. Int J Heat Mass Transf 54:86–91. https://doi.org/10.1016/j.ijheatmasstransfer.2010.10.004
Li D, Sun X, Khaleel M (2013) Comparison of different upscaling methods for predicting thermal conductivity of complex heterogeneous materials system: application on nuclear waste forms. Metall Mater Trans A 44:61–69. https://doi.org/10.1007/s11661-012-1269-3
Likos WJ (2015) Pore-scale model for thermal conductivity of unsaturated sand. Geotech Geol Eng 33:179–192. https://doi.org/10.1007/s10706-014-9744-9
Lu S, Ren T, Gong Y, Horton R (2007) An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci Soc Am J 71:8–14. https://doi.org/10.2136/sssaj2006.0041
Lyu C, Sun Q, Zhang W (2020) Effects of NaCl concentration on thermal conductivity of clay with cooling. Bull Eng Geol Environ 79:1449–1459. https://doi.org/10.1007/s10064-019-01624-w
Ma G, Ran F, Yang Q, Feng E, Lei Z (2015) Eco-friendly superabsorbent composite based on sodium alginate and organo-loess with high swelling properties. RSC Adv 5:53819–53828. https://doi.org/10.1039/C5RA07206A
Malinarič S, Dieška P (2015) Concentric circular strips model of the transient plane source-sensor. Int J Thermophys 36:692–700. https://doi.org/10.1007/s10765-015-1848-9
McCombie ML, Tarnawski VR, Bovesecchi G, Coppa P, Leong WH (2016) Thermal conductivity of pyroclastic soil (pozzolana) from the environs of rome. Int J Thermophys 38:21. https://doi.org/10.1007/s10765-016-2161-y
Munoz-Castelblanco J, Pereira J-M, Delage P, Cui Y-J (2012) The influence of changes in water content on the electrical resistivity of a natural unsaturated loess. Geotech Test J 35:11–17. https://doi.org/10.1520/GTJ103587
Nagasaka Y, Nakazawa N, Nagashima A (1992) Experimental determination of the thermal diffusivity of molten alkali halides by the forced Rayleigh scattering method. I. Molten LiCl, NaCl, KCl, RbCl, and CsCl. Int J Thermophys 13:555–574. https://doi.org/10.1007/BF00501941
Nikoosokhan S, Nowamooz H, Chazallon C (2016) Effect of dry density, soil texture and time-spatial variable water content on the soil thermal conductivity. Geomech Geoeng 11:149–158. https://doi.org/10.1080/17486025.2015.1048313
Noborio K, Mcinnes KJ (1993) Thermal conductivity of salt-affected soils. Soil Sci Soc Am J 57:329–334. https://doi.org/10.2136/sssaj1993.03615995005700020057x
Nusier O, Abu-Hamdeh N (2003) Laboratory techniques to evaluate thermal conductivity for some soils. Heat Mass Transf 39:119–123. https://doi.org/10.1007/s00231-002-0295-x
Radhakrishna HS, Chan HT, Crawford AM, Lau KC (1989) Thermal and physical properties of candidate buffer–backfill materials for a nuclear fuel waste disposal vault. Can Geotech J 26:629–639. https://doi.org/10.1139/t89-076
Rahib Y, Sarh B, Chaoufi J, Bonnamy S, Elorf A (2020) Physicochemical and thermal analysis of argan fruit residues (AFRs) as a new local biomass for bioenergy production. J Therm Anal Calorim. https://doi.org/10.1007/s10973-020-09804-7
Ren J, Men L, Zhang W, Yang J (2019) A new empirical model for the estimation of soil thermal conductivity. Environ Earth Sci 78:361. https://doi.org/10.1007/s12665-019-8360-7
Saito T, Hamamoto S, Ei Mon E, Takemura T, Saito H, Komatsu T, Moldrup P (2014) Thermal properties of boring core samples from the Kanto area, Japan: development of predictive models for thermal conductivity and diffusivity. Soils Found 54:116–125. https://doi.org/10.1016/j.sandf.2014.02.004
Sattler P, Fredlund DG (1989) Use of thermal conductivity sensors to measure matric suction in the laboratory. Can Geotech J 26:491–498. https://doi.org/10.1139/t89-063
Seladji S, Cosenza P, Tabbagh A, Ranger J, Richard G (2010) The effect of compaction on soil electrical resistivity: a laboratory investigation. Eur J Soil Sci 61:1043–1055. https://doi.org/10.1111/j.1365-2389.2010.01309.x
Shan W, Liu Y, Hu Z, Xiao J (2015) A model for the electrical resistivity of frozen soils and an experimental verification of the model. Cold Reg Sci Technol 119:75–83. https://doi.org/10.1016/j.coldregions.2015.07.010
Siddiqua S, Tabiatnejad B, Siemens G (2017) Impact of pore fluid chemistry on the thermal conductivity of bentonite–sand mixture. Environ Earth Sci 77:8. https://doi.org/10.1007/s12665-017-7182-8
Slegel D, Davis L (1977) Transient heat and mass transfer in soils in the vicinity of heated porous pipes. J Heat Transfer 99:541. https://doi.org/10.1115/1.3450739
Song X, Fan H, Liu J, Yang X (2020) An improved thermal conductivity model for unsaturated clay. KSCE J Civil Eng 24:2364–2371. https://doi.org/10.1007/s12205-020-1812-5
Sun Q, Lu C (2019) Semiempirical correlation between thermal conductivity and electrical resistivity for silt and silty clay soils. Geophysics 84:MR99–MR105. https://doi.org/10.1190/geo2018-0549.1
Tarnawski VR, Leong WH (2012) A series–parallel model for estimating the thermal conductivity of unsaturated soils. Int J Thermophys 33:1191–1218. https://doi.org/10.1007/s10765-012-1282-1
Tarnawski VR, Momose T, Leong WH, Bovesecchi G, Coppa P (2009) Thermal conductivity of standard sands. Part I. Dry-State Conditions. Intern J Thermophys 30:949–968. https://doi.org/10.1007/s10765-009-0596-0
Tarnawski VR, McCombie ML, Leong WH, Wagner B, Momose T, Schönenberger J (2012) Canadian field soils II. Modeling of quartz occurrence. Int J Thermophys 33:843–863. https://doi.org/10.1007/s10765-012-1184-2
Tarnawski VR, Momose T, McCombie ML, Leong WH (2015) Canadian field soils III. Thermal-conductivity data and modeling. Int J Thermophys 36:119–156. https://doi.org/10.1007/s10765-014-1793-z
Tarnawski VR, McCombie ML, Leong WH, Coppa P, Corasaniti S, Bovesecchi G (2018) Canadian field soils IV: modeling thermal conductivity at dryness and saturation. Int J Thermophys 39:35. https://doi.org/10.1007/s10765-017-2357-9
Tarnawski VR, Tsuchiya F, Coppa P, Bovesecchi G (2019) Volcanic soils: inverse modeling of thermal conductivity data. Int J Thermophys 40:14. https://doi.org/10.1007/s10765-018-2480-2
Tarnawski VR, Coppa P, Leong WH, McCombie M, Bovesecchi G (2020) On modelling the thermal conductivity of soils using normalized-multi-variable pedotransfer functions. Int J Therm Sci 156:106493. https://doi.org/10.1016/j.ijthermalsci.2020.106493
Usowicz B, Lipiec J, Ferrero A (2006) Prediction of soil thermal conductivity based on penetration resistance and water content or air-filled porosity. Int J Heat Mass Transf 49:5010–5017. https://doi.org/10.1016/j.ijheatmasstransfer.2006.05.023
Usowicz B, Lipiec J, Usowicz JB, Marczewski W (2013) Effects of aggregate size on soil thermal conductivity: comparison of measured and model-predicted data. Int J Heat Mass Transf 57:536–541. https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.067
Wagner R, Clauser C (2005) Evaluating thermal response tests using parameter estimation for thermal conductivity and thermal capacity. J Geophys Eng 2:349–356. https://doi.org/10.1088/1742-2132/2/4/S08
Wang J, Hayakawa KI (1993) Maximum slope method for evaluating thermal conductivity probe data. J Food Sci 58:1340–1345. https://doi.org/10.1111/j.1365-2621.1993.tb06179.x
Wang S, Ai Q, Tq Z, Sun C, Xie M (2020) Analysis of radiation effect on thermal conductivity measurement of semi-transparent materials based on transient plane source method. Appl Therm Eng 177:115457. https://doi.org/10.1016/j.applthermaleng.2020.115457
Xu P, Zhang Q, Qian H, Qu W (2020) Effect of sodium chloride concentration on saturated permeability of remolded loess. Minerals 10:199. https://doi.org/10.3390/min10020199
Yun TS, Jeong YJ, Han TS, Youm KS (2013) Evaluation of thermal conductivity for thermally insulated concretes. Energy Build 61:125–132. https://doi.org/10.1016/j.enbuild.2013.01.043
Yusufova VD, Pepinov RI, Nikolaev VA, Guseinov GM (1975) Thermal conductivity of aqueous solutions of NaCl. J Eng Phys 29:1225–1229. https://doi.org/10.1007/BF00867119
Zhang N, Wang Z (2017) Review of soil thermal conductivity and predictive models. Int J Therm Sci 117:172–183. https://doi.org/10.1016/j.ijthermalsci.2017.03.013
Zhang H, Li MJ, Fang WZ, Dan D, Li ZY, Tao WQ (2014) A numerical study on the theoretical accuracy of film thermal conductivity using transient plane source method. Appl Therm Eng 72:62–69. https://doi.org/10.1016/j.applthermaleng.2014.01.058
Zhang X, Li P, Li ZB, Yu GQ (2017) Soil water-salt dynamics state and associated sensitivity factors in an irrigation district of the loess area: a case study in the Luohui Canal Irrigation District China. Environ Earth Sci 76:715. https://doi.org/10.1007/s12665-017-7066-y
Zhang Y-H, Feng B, Tu J, Fan LW (2019) Transient determination on the bulk thermal conductivity of sub-millimeter thin films of composite phase change thermal interfacial materials. In: ASME 2019 Heat Transfer Summer Conference collocated with the ASME 2019 13th International Conference on Energy Sustainability, 2019. V001T14A001. https://doi.org/10.1115/ht2019-3520