Ảnh hưởng của polyethylene glycol (PEG) đến hiệu suất của vật liệu cực dương LiMn2O4 cho pin lithium ion

Journal of Materials Science: Materials in Electronics - Tập 27 - Trang 5408-5414 - 2016
Zhengyong Yuan1, Hao Zheng2,3, Shiquan Wang2, Chuanqi Feng2
1Department of Chemical Engineering, Ningbo Polytechnic College, Ningbo, China
2Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, Hubei University, Wuhan, China
3Key Laboratory of Functional Materials and Chemistry for Performance and Resource of Guizhou Education Department, Anshun University, Anshun, China

Tóm tắt

Giai đoạn spinel LiMn2O4 được tổng hợp bằng phương pháp đồng kết tủa có sự hỗ trợ của polyethylene glycol (PEG). Các mẫu được đặc trưng bằng các kỹ thuật nhiễu xạ tia X và kính hiển vi điện tử quét. Các mẫu LiMn2O4 được tổng hợp có hình thái tương tự và kích thước đồng đều khoảng 150–350 nm. Các phép đo điện hóa cho thấy mẫu nanoparticle LiMn2O4 được tổng hợp sử dụng PEG có trọng lượng phân tử là 4000 (PEG-4000) cho thấy hiệu suất chu kỳ tốt nhất và khả năng tỷ lệ cao nhất trong số tất cả các mẫu, với dung lượng phóng ban đầu là 133 mAhg−1 và duy trì ở mức 122 mAhg−1 ở 0.5 °C sau 50 chu kỳ. Mất mát dung lượng chỉ là 5,1%. Kiểm soát kích thước hạt của LiMn2O4 là một trong những yếu tố quan trọng cho ứng dụng của nó như một vật liệu cực dương.

Từ khóa

#LiMn2O4 #polyethylene glycol #pin lithium ion #hiệu suất điện hóa #kích thước hạt

Tài liệu tham khảo

H. Xia, Z.T. Luo, J.P. Xie, Nanostructured LiMn2O4 and their composites as high-performance cathodes for lithium-ion batteries. Prog. Nat. Sci. Mater. Int. 22, 572–584 (2012) F. Cheng, J. Liang, Z. Tao, J. Chen, Functional materials for rechargeable batteries. Adv. Mater. 23, 1695–1715 (2011) M.S. Whittingham, Lithium batteries and cathode naterials. Chem. Rev. 104, 4271–4302 (2004) H. Xia, Y.S. Meng, M.O. Lai, L. Lu, Structural and electrochemical properties of LiNi0.5Mn0.5O2 thin-film electrodes prepared by pulsed laser deposition. J. Electrochem. Soc. 157, A348–A354 (2010) H. Xia, L. Lu, Y.S. Meng, Growth of layered LiNi0.5Mn0.5O2 thin films by pulsed laser deposition for application in micro-batteries. Appl. Phys. Lett. 92, 11912–11913 (2008) A. Manthiram, Materials challenges and opportunities of lithium ion batteries. J. Phys. Chem. Lett. 2, 176–184 (2011) S. Mandal, R.M. Rojas, J.M. Amarilla, P. Calle, N.V. Kosova, V.F. Anufrienko, J.M. Rojo, High temperature co-doped LiMn2O4-based spinels. Structural, electrical, and electrochemical characterization. Chem. Mater. 14, 1598–1605 (2002) R.F. Liang, Z.X. Wang, H.J. Guo, X.H. Li, W.J. Peng, Z.G. Wang, Fabrication and electrochemical properties of lithium-ion batteries for power tools. J. Power Sour. 184, 598–603 (2008) D. Zhang, B.N. Popov, R.E. White, Electrochemical investigation of CrO2.65 doped LiMn2O4 as a cathode material for lithium-ion batteries. J. Power Sour. 76, 81–90 (1998) S.T. Yang, J.H. Jia, L. Ding, M.C. Zhang, Studies of structure and cycleability of LiMn2O4 and LiNd0.01Mn1.99O4 as cathode for Li-ion batteries. Electrochim. Acta 48, 569–573 (2003) R. Singhal, S.R. Das, M.S. Tomar, O. Ovideo, S. Nieto, R.E. Melgarejo, R.S. Katiyar, Synthesis and characterization of Nd doped LiMn2O4 cathode for Li-ion rechargeable batteries. J. Power Sour. 164, 857–861 (2007) A. Subramania, N. Angayarkanni, T. Vasudevan, Polyaspartic-acid-pyrolysis route for the synthesis of nanocrystalline LiCo0.15Mn1.85O4 powder for Li-ion batteries. Ionics 13, 61–65 (2007) K. Suryakala, G.P. Kalaignan, T. Vasudevan, Synthesis and characterization of Cr-doped LiMn2−xCrxO4 (x = 0.1–0.4) cathode for Li-ion battery. Mater. Chem. Phys. 104, 479–482 (2007) T. Kashiwagi, M. Nakayama, K. Watanabe, M. Wakihara, Y. Kobayashi, H. Miyashiro, Relationship between the electrochemical behavior and Li arrangement in LixMyMn2−yO4 (M = Co, Cr) with spinel structure. J. Phys. Chem. B 110, 4998–5004 (2006) M.V. Reddy, A. Sakunthala, S. SelvashekaraPandian, B.V.R. Chowdari, Preparation, comparative energy storage properties, and impedance spectroscopy studies of environmentally friendly cathode, Li(MMn11/6)O4 (M = Mn1/6, Co1/6, (Co1/12Cr1/12)). J. Phys. Chem. C 117, 9056–9064 (2013) C.Q. Feng, H. Li, C.F. Zhang, Z.P. Guo, H.M. Wu, J. Tang, Synthesis and electrochemical properties of non-stoichiometric Li–Mn-spinel (Li1.02MxMn1.95O4−yFy) for lithium ion battery application. Electrochim. Acta 61, 87–93 (2012) Y.S. Shang, J.L. Liu, T. Huang, A.S. Yu, Effect of heat treatment on the structure and electrochemical performance of FePO4 coated spinel LiMn2O4. Electrochim. Acta 113, 248–255 (2013) L.J. Feng, S.P. Wang, L. Han, X.Y. Qin, H.Y. Wei, Y.Z. Yang, Enhanced electrochemical properties of LiMn2O4 cathode material coated by 5 wt% of nano-La2O3. Mater. Lett. 78, 116–119 (2012) Q.Q. Chen, Y.B. Wang, T.T. Zhang, W.M. Yin, J.W. Yang, X.Y. Wang, Electrochemical performance of LaF3-coated LiMn2O4 cathode materials for lithium ion batteries. Electrochim. Acta 83, 65–72 (2012) X.W. Li, R. Yang, B. Cheng, Q. Hao, H.Y. Xu, J. Yang, Y.T. Qian, Enhanced electrochemical properties of nano-Li3PO4 coated on the LiMn2O4 cathode material for lithium ion battery at 55 °C. Mater. Lett. 66, 168–171 (2012) S. Zhao, Q.J. Chang, K. Jiang, Y. Bai, Y.Q. Yang, W.F. Zhang, Performance improvement of spinel LiMn2O4 cathode material by LaF3 surface modification. Solid State Ion. 15, 1–7 (2013) J. Yao, C. Shen, P. Zhang, C.A. Ma, D.H. Gregory, L. Wang, Spinel-Li3.5+xTi5O12 coated LiMn2O4 with high surface Mn valence for an enhanced cycling performance at high temperature. Electrochem. Commun. 31, 92–95 (2013) Z.G. Zhang, Z.L. Gong, Y. Yang, Electrochemical performance and surface properties of bare and TiO2-coated cathode materials in lithium-ion batteries. J. Phys. Chem. B 108, 17546–17552 (2004) J.Y. Luo, H.-M. Xiong, Y.Y. Xia, LiMn2O4 nanorods, nanothorn microspheres, and hollow nanospheres as enhanced cathode materials of lithium ion battery. J. Phys. Chem. C 112, 12051–12057 (2008) H.W. Lee, P. Muralidharan, R. Ruffo, C.M. Mari, Y. Cui, D.K. Kim, Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. Nano Lett. 10, 3852–3856 (2010) Y. Yang, C. Xie, R. Ruffo, H.L. Peng, D.K. Kim, Y. Cui, Single nanorod devices for battery diagnostics: a case study on LiMn2O4. Nano Lett. 9, 4109–4114 (2009) W. Tang, X.J. Wang, Y.Y. Hou, L.L. Li, H. Sun, Y.S. Zhu, Y. Bai, Y.P. Wu, K. Zhu, T. van Ree, Nano LiMn2O4 as cathode material of high rate capability for lithium ion batteries. J. Power Sour. 198, 308–311 (2012) B.H. Lin, Q. Yin, H.G. Hu, F.J. Lu, H. Xia, LiMn2O4 nanoparticles anchored on graphene nanosheets as high-performance cathode material for lithium-ion batteries. J. Solid State Chem. 209, 23–28 (2014) J.G. Yang, X.P. Han, X.L. Zhang, F.Y. Cheng, J. Chen, Spinel LiNi0.5Mn1.5O4 cathode for rechargeable lithium-ion battery: nano vs micro, ordered phase (P4332) vs disordered phase (Fd3m). Nano Res. 6, 679–687 (2013) D. Kovacheva, B. Markovsky, G. Salitra, Y. Talyosef, M. Gorova, E. Levi, M. Riboch, H. Kim, D. Aurbach, Electrochemical behavior of electrodes comprising micro-sized and nano-sized particles of LiNi0.5Mn1.5O4: a comparative study. Electrochim. Acta 50, 5553–5560 (2005) D.K. Kim, P. Muralidharan, H.W. Lee, R. Ruffo, Y. Yang, C.K. Chan, H. Peng, R.A. Huggins, Y. Cu, Spinel LiMnO nanorods as lithium ion battery cathodes. Nano Lett. 8, 3948–3952 (2008) Y.K. Sun, I.H. Oh, K.Y. Kim, Synthesis of spinel LiMn2O4 by the sol-gel method for a cathode-active material in lithium secondary batteries. Ind. Eng. Chem. Res. 36, 4839–4846 (1997) S.E. Rock, L. Wu, D.J. Crain, S. Krishnan, D. Roy, Interfacial characteristics of a PEGylated imidazolium bistriflamide ionic liquid electrolyte at a lithium ion battery cathode of LiMn2O4. ACS Appl. Mater. Interfaces 5, 2075–2084 (2013) M.A. Kiani, M.F. Mousavi, M.S. Rahmanifar, Synthesis of Nano- and Micro-Particles of LiMn2O4: Electrochemical Investigation and Assessment as a Cathode in Li Battery. Int. J. Electrochem. Sci. 6, 2581–2595 (2011)