Influences of ABC transporter and CYP3A4/5 genetic polymorphisms on the pharmacokinetics of lenvatinib in Chinese healthy subjects

European Journal of Clinical Pharmacology - Tập 76 - Trang 1125-1133 - 2020
Jiaming Li1, Xiaoqian Wang1, Chen Ning1, Zhaoyu Wang1, Yao Wang1, Ming Zheng2, Siliang Zhang1, Yang Lu1, Yongjie Zhang1, Ning Li3, Xijing Chen1, Di Zhao1
1Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
2School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
3National Experimental Teaching Demonstration Center of Pharmacy, China Pharmaceutical University, Nanjing, China

Tóm tắt

To investigate whether the CYP3A4/5 and ABC transporter genetic polymorphisms could affect the pharmacokinetics of lenvatinib in Chinese healthy subjects. Thirty-two healthy Chinese volunteers were enrolled and took oral administration of 8 mg lenvatinib. Plasma concentration of lenvatinib was determined by UPLC-MS/MS, the CYP3A4*1G, CYP3A5*3, ABCB1 (3435 C>T, 1236 C>T, 2677 G>T/A), ABCG2 (421 C>A, 34 G>A), and ABCC2-24 C>T genotypes were determined by SnapShot Technique. In ABCB1 3435T carriers (n = 19), AUC0–120h (815.7 (701.9–923.9) ng·h/mL) and AUC0-∞ (843.3 (722.2–977.7) ng·h/mL) were significantly higher than ABCB1 3435CC homozygous subjects (n = 13, 575.3 (513.7–756.9) ng·h/mL and 590.0 (540.5–782.0) ng·h/mL, respectively); on the contrary, the clearance (CL/F) of ABCB1 3435T carriers was significantly lower (9.5 (8.2–11.1) L/h vs. 13.6 (10.4–14.8) L/h). And the Cmax in CYP3A4*1G/*1G allele carrier subjects was higher than *1 carrier (73.4 ng/mL vs. 53.5 (46.1–60.6) ng/mL), but did not reach the level of significantly statistical difference. Genetic polymorphisms of ABCC2, ABCG2, and CYP3A5 could not influence pharmacokinetic parameters of lenvatinib. This work presented an evidence that the ABCB1 3435 C>T polymorphism could significantly affect the exposure and clearance of lenvatinib. These findings may explain the reasons for the huge inter-individual differences in lenvatinib, and should contribute to clinical individualized treatment.

Tài liệu tham khảo

Matsui J, Yamamoto Y, Funahashi Y, Tsuruoka A, Watanabe T, Wakabayashi T, Uenaka T, Asada M (2008) E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int J Cancer 122(3):664–671. https://doi.org/10.1002/ijc.23131 Matsui J, Funahashi Y, Uenaka T, Watanabe T, Tsuruoka A, Asada M (2008) Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin Cancer Res 14(17):5459–5465. https://doi.org/10.1158/1078-0432.CCR-07-5270 Okamoto K, Kodama K, Takase K, Sugi NH, Yamamoto Y, Iwata M, Tsuruoka A (2013) Antitumor activities of the targeted multi-tyrosine kinase inhibitor lenvatinib (E7080) against RET gene fusion-driven tumor models. Cancer Lett 340(1):97–103. https://doi.org/10.1016/j.canlet.2013.07.007 Okamoto K, Kodama K, Takase K, Nakamoto K, Coffey H, Selvaraj A, Smith PG, Iwata M, Tsuruoka A (2012) Anti-tumor activities of lenvatinib against RET gene fusion driven tumor models. Eur J Cancer 48:94. https://doi.org/10.1016/S0959-8049(12)72105-6 Andrae J, Gallini R, Betsholtz C (2008) Role of platelet-derived growth factors in physiology and medicine. Genes Dev 22(10):1276–1312. https://doi.org/10.1101/gad.1653708 Yamamoto Y, Matsui J, Matsushima T, Obaishi H, Miyazaki K, Nakamura K, Tohyama O, Semba T, Yamaguchi A, Hoshi SS, Mimura F, Haneda T, Fukuda Y, Kamata JI, Takahashi K, Matsukura M, Wakabayashi T, Asada M, Nomoto KI, Watanabe T, Dezso Z, Yoshimatsu K, Funahashi Y, Tsuruoka A (2014) Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage. Vasc Cell 6:18. https://doi.org/10.1186/2045-824X-6-18 Inc E (2015) Lenvima (lenvatinib) capsules, for oral use: US prescribing information. http://www.fda.gov. Accessed 24 February 2015 Lenvatinib in combination with everolimus. Available online: http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm501070.htm. Accessed on 8 August 2017 Kudo M, Finn RS, Qin S, Han KH, Ikeda K, Piscaglia F, Baron A, Park JW, Han G, Jassem J, Blanc JF, Vogel A, Komov D, Evans TRJ, Lopez C, Dutcus C, Guo M, Saito K, Kraljevic S, Tamai T, Ren M, Cheng AL (2018) Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet 391(10126):1163–1173. https://doi.org/10.1016/S0140-6736(18)30207-1 Inc BHP (2013) Nexavar (sorafenib) tablets, oral: US prescribing information. http://labeling.bayerhealthcare.com/html/products/pi/Nexavar_PI.pdf. Accessed 16 Jan 2017 Agency EM (2016) Nexavar (sorafenib):EU summary of product characteristics. http://www.ema.europa.eu/. Accessed 7 Feb 2017 (2018) FDA approves lenvatinib for unresectable hepatocellular carcinoma. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-lenvatinib-unresectable-hepatocellular-carcinoma. Accessed 16 August 2018 Dubbelman AC, Rosing H, Nijenhuis C, Huitema ADR, Mergui-Roelvink M, Gupta A, Verbel D, Thompson G, Shumaker R, Schellens JHM, Beijnen JH (2015) Pharmacokinetics and excretion of C-14-lenvatinib in patients with advanced solid tumors or lymphomas. Investig New Drugs 33(1):233–240. https://doi.org/10.1007/s10637-014-0181-7 Dubbelman AC, Rosing H, Thijssen B, Gebretensae A, Lucas L, Chen H, Shumaker R, Schellens JH, Beijnen JH (2012) Development and validation of LC-MS/MS assays for the quantification of E7080 and metabolites in various human biological matrices. J Chromatogr B Anal Technol Biomed Life Sci 887-888:25–34. https://doi.org/10.1016/j.jchromb.2012.01.004 (2015) Highlights of prescribing information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/206947s007lbl.pdf Shumaker RC, Aluri J, Fan J, Martinez G, Thompson GA, Ren M (2014) Effect of rifampicin on the pharmacokinetics of lenvatinib in healthy adults. Clin Drug Invest 34(9):651–659. https://doi.org/10.1007/s40261-014-0217-y Shumaker R, Aluri J, Fan J, Martinez G, Thompson GA, Ren M (2015) Effects of ketoconazole on the pharmacokinetics of lenvatinib (E7080) in healthy participants. Clin Pharm Drug Dev 4(2):155–160. https://doi.org/10.1002/cpdd.140 Qiu XY, Jiao Z, Zhang M, Zhong LJ, Liang HQ, Ma CL, Zhang L, Zhong MK (2008) Association of MDR1, CYP3A4*18B, and CYP3A5*3 polymorphisms with cyclosporine pharmacokinetics in Chinese renal transplant recipients. Eur J Clin Pharmacol 64(11):1069–1084. https://doi.org/10.1007/s00228-008-0520-8 Fukushima-Uesaka H, Saito Y, Watanabe H, Shiseki K, Saeki M, Nakamura T, Kurose K, Sai K, Komamura K, Ueno K, Kamakura S, Kitakaze M, Hanai S, Nakajima T, Matsumoto K, Saito H, Goto Y, Kimura H, Katoh M, Sugai K, Minami N, Shirao K, Tamura T, Yamamoto N, Minami H, Ohtsu A, Yoshida T, Saijo N, Kitamura Y, Kamatani N, Ozawa S, Sawada J (2004) Haplotypes of CYP3A4 and their close linkage with CYP3A5 haplotypes in a Japanese population. Hum Mutat 23(1):100. https://doi.org/10.1002/humu.9210 Du J, Yu L, Wang L, Zhang A, Shu A, Xu L, Xu M, Shi Y, Li X, Feng G, Xing Q, He L (2007) Differences in CYP3A41G genotype distribution and haplotypes of CYP3A4, CYP3A5 and CYP3A7 in 3 Chinese populations. Clin Chim Acta 383(1–2):172–174. https://doi.org/10.1016/j.cca.2007.04.027 Zhang W, Yuan J-J, Kan Q-C, Zhang L-R, Chang Y-Z, Wang Z-Y, Li Z-S (2011) Influence of CYP3A5*3 polymorphism and interaction between CYP3A5*3 and CYP3A4*1G polymorphisms on post-operative fentanyl analgesia in Chinese patients undergoing gynaecological surgery. Eur J Anaesthesiol:1. https://doi.org/10.1097/EJA.0b013e3283438b39 Haufroid V (2011) Genetic polymorphisms of ATP-binding cassette transporters ABCB1 and ABCC2 and their impact on drug disposition. Curr Drug Targets 12(5):631–646 Chen X, Chen D, Yang S, Ma R, Pan Y, Li X, Ma S (2015) Impact of ABCG2 polymorphisms on the clinical outcome of TKIs therapy in Chinese advanced non-small-cell lung cancer patients. Cancer Cell Int 15:43. https://doi.org/10.1186/s12935-015-0191-3 Lin JH (2007) Transporter-mediated drug interactions: clinical implications and in vitro assessment. Expert Opin Drug Metab Toxicol 3(1):81–92. https://doi.org/10.1517/17425255.3.1.81 Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC (1987) Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci U S A 84(21):7735–7738. https://doi.org/10.1073/pnas.84.21.7735 Robey RW, Polgar O, Deeken J, To KW, Bates SE (2007) ABCG2: determining its relevance in clinical drug resistance. Cancer Metastasis Rev 26(1):39–57. https://doi.org/10.1007/s10555-007-9042-6 Hussein Z, Mizuo H, Hayato S, Namiki M, Shumaker R (2017) Clinical pharmacokinetic and pharmacodynamic profile of lenvatinib, an orally active, small-molecule, multitargeted tyrosine kinase inhibitor. Eur J Drug Metab Pharmacokinet 42(6):903–914. https://doi.org/10.1007/s13318-017-0403-4 Shumaker R, Aluri J, Fan J, Martinez G, Ren M, Chen K (2014) Evaluation of the effects of formulation and food on the pharmacokinetics of lenvatinib (E7080) in healthy volunteers. Int J Clin Pharmacol Ther 52(4):284–291. https://doi.org/10.5414/Cp201937 Koyama N, Saito K, Nishioka Y, Yusa W, Yamamoto N, Yamada Y, Nokihara H, Koizumi F, Nishio K, Tamura T (2014) Pharmacodynamic change in plasma angiogenic proteins: a dose-escalation phase 1 study of the multi-kinase inhibitor lenvatinib. BMC Cancer 14:530. https://doi.org/10.1186/1471-2407-14-530 Yamada K, Yamamoto N, Yamada Y, Nokihara H, Fujiwara Y, Hirata T, Koizumi F, Nishio K, Koyama N, Tamura T (2011) Phase I dose-escalation study and biomarker analysis of E7080 in patients with advanced solid tumors. Clin Cancer Res 17(8):2528–2537. https://doi.org/10.1158/1078-0432.CCR-10-2638 Takahashi N, Miura M, Scott SA, Kagaya H, Kameoka Y, Tagawa H, Saitoh H, Fujishima N, Yoshioka T, Hirokawa M, Sawada K (2010) Influence of CYP3A5 and drug transporter polymorphisms on imatinib trough concentration and clinical response among patients with chronic phase chronic myeloid leukemia. J Hum Genet 55(11):731–737. https://doi.org/10.1038/jhg.2010.98 Tamai T, Hayato S, Hojo S, Suzuki T, Okusaka T, Ikeda K, Kumada H (2017) Dose finding of lenvatinib in subjects with advanced hepatocellular carcinoma based on population pharmacokinetic and exposure-response analyses. J Clin Pharmacol 57(9):1138–1147. https://doi.org/10.1002/jcph.917 Gupta A, Jarzab B, Capdevila J, Shumaker R, Hussein Z (2016) Population pharmacokinetic analysis of lenvatinib in healthy subjects and patients with cancer. Brit J Clin Pharmacol 81(6):1124–1133. https://doi.org/10.1111/bcp.12907 Scott LJ (2015) Lenvatinib: first global approval. Drugs 75(5):553–560. https://doi.org/10.1007/s40265-015-0383-0 Zhang W, Chang YZ, Kan QC, Zhang LR, Li ZS, Lu H, Wang ZY, Chu QJ, Zhang J (2010) CYP3A4*1G genetic polymorphism influences CYP3A activity and response to fentanyl in Chinese gynecologic patients. Eur J Clin Pharmacol 66(1):61–66. https://doi.org/10.1007/s00228-009-0726-4 Hu GX, Dai DP, Wang H, Huang XX, Zhou XY, Cai J, Chen H, Cai JP (2017) Systematic screening for CYP3A4 genetic polymorphisms in a Han Chinese population. Pharmacogenomics 18(4):369–379. https://doi.org/10.2217/pgs-2016-0179 Zhang J, Dai Y, Liu Z, Zhang M, Li C, Chen D, Song H (2017) Effect of CYP3A4 and CYP3A5 genetic polymorphisms on the pharmacokinetics of sirolimus in healthy Chinese volunteers. Ther Drug Monit 39(4):406–411. https://doi.org/10.1097/FTD.0000000000000415 Wang D, Johnson AD, Papp AC, Kroetz DL, Sadée W (2005) Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C>T affects mRNA stability. Pharmacogenet Genomics 15(10):693–704. https://doi.org/10.1097/01.fpc.0000178311.02878.83 Harivenkatesh N, Kumar L, Bakhshi S, Sharma A, Kabra M, Velpandian T, Gogia A, Shastri SS, Biswas NR, Gupta YK (2017) Influence of MDR1 and CYP3A5 genetic polymorphisms on trough levels and therapeutic response of imatinib in newly diagnosed patients with chronic myeloid leukemia. Pharmacol Res 120:138–145. https://doi.org/10.1016/j.phrs.2017.03.011 Yamakawa Y, Hamada A, Nakashima R, Yuki M, Hirayama C, Kawaguchi T, Saito H (2011) Association of genetic polymorphisms in the influx transporter SLCO1B3 and the efflux transporter ABCB1 with imatinib pharmacokinetics in patients with chronic myeloid leukemia. Ther Drug Monit 33(2):244–250. https://doi.org/10.1097/FTD.0b013e31820beb02 Boss DS, Glen H, Beijnen JH, Keesen M, Morrison R, Tait B, Copalu W, Mazur A, Wanders J, O'Brien JP, Schellens JH, Evans TR (2012) A phase I study of E7080, a multitargeted tyrosine kinase inhibitor, in patients with advanced solid tumours. Br J Cancer 106(10):1598–1604. https://doi.org/10.1038/bjc.2012.154