Influence on the Electrocatalytic Water Oxidation of M2+/M3+ Cation Arrangement in NiFe LDH: Experimental and Theoretical DFT Evidences

Electrocatalysis - Tập 8 - Trang 383-391 - 2017
Ariel Guzmán-Vargas1, Juvencio Vazquez-Samperio1,2, Miguel A. Oliver-Tolentino2, Guadalupe Ramos-Sánchez3, Jorge L. Flores-Moreno4, Edilso Reguera2
1Instituto Politécnico Nacional, ESIQIE-Departamento de Ingeniería Química, Laboratorio de Investigación en Materiales Porosos, Catálisis Ambiental y Química Fina, Mexico City, Mexico
2Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Mexico City, Mexico
3Departamento de Química, Catedra CONACYT comisionado a Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
4Área de Química de Materiales, Universidad Autónoma Metropolitana-Azcapotzalco, Mexico City, Mexico

Tóm tắt

This contribution reports the effect of the iron content and M2+/M3+ ratio cation arrangement-distribution on the oxygen evolution reaction (OER) catalyzed by layered double hydroxides. The electrocatalysts, containing variable contents of Ni and Fe, were successfully prepared through a homogeneous precipitation method. The formation of LDH structure was verified by powder X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Other properties were determined such as specific surface area, electrical conductivity, and surface basicity. First-principles DFT+U calculations complemented and supported the electrochemical results. According to both the electrochemical and simulation results, the increase of the catalytic activity for the OER on the presence of Fe3+ is closely related with the configuration and distribution of Fe and Ni cations in the brucite layer structure. The effect of iron is indirect, favoring the electron hopping on the Ni sites for certain local configuration.

Tài liệu tham khảo

P.J. Sideris, U.G. Nielsen, Z. Gan, C.P. Grey, Science 321, 113 (2008) X. Long, Z. Wang, S. Xiao, Y. An, S. Yang, Mater. Today 19, 213 (2015) M. Gong, H. Dai, Nano Res. 8, 23 (2014) S. He, Z. An, M. Wei, D.G. Evans, X. Duan, Chem. Commun. 49, 5912 (2013) N. Iyi, K. Okamoto, Y. Kaneko, T. Matsumoto, Chem. Lett. 34, 932 (2005) X. Xu, L. Feng, H. Zhuangqun, Rev. Adv. Sci. Eng. 3, 158 (2014) M. Gong, Y. Li, H. Wang, Y. Liang, J.Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, H. Dai, J. Am. Chem. Soc. 135, 8452 (2013) J. Jiang, A. Zhang, L. Li, L. Ai, J. Power Sources 278, 445 (2015) Q. Yang, T. Li, Z. Lu, X. Sun, J. Liu, Nano 6, 11789 (2014) Y. Xu, Y. Hao, G. Zhang, Z. Lu, S. Han, Y. Li, X. Sun, RSC Adv. 5, 55131 (2015) C. Qiao, Y. Zhang, Y. Zhu, C. Cao, X. Bao, J. Xu, J. Mater. Chem. A 3, 6878 (2015) X. Yu, M. Zhang, W. Yuan, G. Shi, J. Mater. Chem. A 3, 6921 (2015) D.H. Youn, Y. Bin Park, J.Y. Kim, G. Magesh, Y.J. Jang, J.S. Lee, J. Power Sources 294, 437 (2015) N. Suzuki, T. Horie, G. Kitahara, M. Murase, K. Shinozaki, Y. Morimoto, Electrocatalysis 5, 114 (2016) L. Trotochaud, S.L. Young, J.K. Ranney, S.W. Boettcher, J. Am. Chem. Soc. 136, 6744 (2014) J.Y.C. Chen, L. Dang, H. Liang, W. Bi, J.B. Gerken, S. Jin, A.E. Alp, S. Stahl, J. Am. Chem. Soc. 137, 15090 (2015) D. Friebel, M.W. Louie, M. Bajdich, K.E. Sanwald, Y. Cai, A.M. Wise, M.J. Cheng, D. Sokaras, T.C. Weng, R. Alonso-Mori, R.C. Davis, J.R. Bargar, J.K. Nørskov, A. Nilsson, A.T. Bell, J. Am. Chem. Soc. 137, 1305 (2015) H.S. Ahn, A.J. Bard, J. Am. Chem. Soc. 138, 313 (2016) M. Görlin, P. Chernev, J.F. Araújo, T. Reier, S. Dresp, B. Paul, R. Krähnert, H. Dau, P. Strasser, J. Am. Chem. Soc. 138, 5603 (2016) W. Ma, R. Ma, C. Wang, J. Liang, X. Liu, K. Zhou, ACS Nano 9, 1977 (2015) M.A. Oliver-Tolentino, J. Vázquez-Samperio, A. Manzo-Robledo, R.D.G. González-Huerta, J.L. Flores-Moreno, D. Ramírez-Rosales, A. Guzmán-Vargas, J. Phys. Chem. C 118, 22432 (2014) Y. Dong, P. Zhang, Y. Kou, Z. Yang, Y. Li, X. Sun, Catal. Letters 145, 1541 (2015) Y. Zhang, Inorg. Chem. 21, 3889 (1982) G. Kresse, J. Furthmüller. Comp. Mater. Sci. 6, 15 (1996) G. Kresse, J. Hafner, Phys. Rev. B 48, 13115 (1993) P.E. Blöchl, Phys. Rev. B 50, 17953 (1994) K. Burke, J.P. Perdew, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) S.L. Dudarev, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Phys. Rev. B 57, 1505 (1998) A. Jain, G. Hautier, C.J. Moore, S. Ping Ong, C.C. Fischer, T. Mueller, K.A. Persson, G. Ceder, Comput. Mater. Sci. 50, 2295 (2011) Z. Hu, H. Metiu, J. Phys. Chem. C 115, 5841 (2011) S.M. Xu, T. Pan, Y.B. Dou, H. Yan, S.T. Zhang, F.Y. Ning, W.Y. Shi, M. Wei, J. Phys. Chem. C 119, 18823 (2015) M.A. Oliver-Tolentino, A. Guzmán-Vargas, A. Manzo-Robledo, M.J. Martínez-Ortiz, J.L. Flores-Moreno, Catal. Today 166, 194 (2011) B. Grégoire, C. Ruby, C. Carteret, Cryst. Growth Des. 12, 4324 (2012) Y. Furukawa, K. Tadanaga, A. Hayashi, M. Tatsumisago, Solid State Ionics 192, 185 (2011) D. Kubo, K. Tadanaga, A. Hayashi, M. Tatsumisago, J. Electroanal. Chem. 671, 102 (2012) F.M. Labajos, V. Rives, M.A. Ulibarri, J. Mater. Sci. 27, 1546 (1992) R.D. Shannon, Acta Cryst. A 32, 751 (1976) R. Dębek, K. Zubek, M. Motak, M.E. Galvez, P. Da Costa, T. Grzybek, Comptes Rendus Chim. 18, 1205 (2015) K. Parida, J. Das, J. Mol. Catal. A Chem. 151, 185 (2000) R. Ionescu, O.D. Pavel, R. Bîrjega, R. Zǎvoianu, E. Angelescu, Catal. Letters 134, 309 (2010) J.T. Kloprogge, R.L. Frost, J. Solid State Chem. 146, 506 (1999) H.P. Komsa, A. Pasquarello, Phys. Rev. Lett. 110, 1 (2013) R.L. Doyle, M.E.G. Lyons, Electrocatalysis 5, 114 (2014) Y. Vlamidis, E. Scavetta, M. Gazzano, D. Tonelli, Electrochim. Acta 188, 653 (2016) E. Coronado, R. Gala, C. Martı, A. Ribera, M. Castro 47, 9103 (2008) S. Cadars, G. Layrac, G. Corine, M. Deschampss, J.R. Yates, D. Tichit, D. Massiot, Chem. Mater. 23, 2821 (2011) G. Abellán, E. Coronado, C. Martí-Gastaldo, J. Waerenborgh, A. Ribera, Inorg. Chem. 52, 10147 (2013)