Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Ảnh hưởng của các phương pháp cai máy thở lên cơ hoành sau khi thở máy ở mô hình chuột
Tóm tắt
Thông khí cơ học (MV) liên quan đến sự yếu của cơ hoành, một hiện tượng được gọi là suy giảm cơ hoành do thở máy. Việc cai máy cần cân bằng giữa việc tải cơ hoành và việc ngăn ngừa quá tải sau MV. Các phương pháp cai máy như thông khí hỗ trợ áp lực (PSV) và thử nghiệm thở tự phát (SBT) dẫn đến việc tái tải dần dần hoặc gián đoạn một cơ hoành yếu. Nghiên cứu này đã điều tra phương pháp cai máy nào cho phép phục hồi hiệu quả hơn cân bằng nội môi của cơ hoành. Các con chuột (n = 8 mỗi nhóm) nhận 12 giờ thở máy, sau đó là 12 giờ thông khí hỗ trợ áp lực (PSV) hoặc thử nghiệm thở tự phát gián đoạn (SBT) và được so sánh với các con chuột bị hiến mạng sau 12 giờ thở máy (CMV) và các con chuột bị hiến mạng cấp tính (CON). Sản xuất lực, hoạt động của calpain-1 và caspase-3, stress oxy hóa và các dấu hiệu tổng hợp protein (AKT phosphoryl hóa so với AKT tổng thể) được đo trong cơ hoành. Sự giảm lực cơ hoành do CMV so với CON càng tồi tệ hơn khi dùng PSV và SBT (cả hai đều p < 0.05 so với CON và CMV). Cả PSV và SBT đều đảo ngược stress oxy hóa và hoạt hóa calpain-1 do CMV gây ra. Giảm pAKT/AKT được quan sát thấy sau CMV và hai thủ tục cai máy. MV dẫn đến mất khả năng co bóp của cơ hoành, điều này đã được làm trầm trọng thêm trong SBT và PSV bất chấp sự đảo ngược của stress oxy hóa và proteolysis.
Từ khóa
#thông khí cơ học #cai máy #cơ hoành #stress oxy hóa #chuột thí nghiệmTài liệu tham khảo
Levine S, Biswas C, Dierov J, Barsotti R, Shrager JB, Nguyen T, et al. Increased proteolysis, myosin depletion, and atrophic AKT-FOXO signaling in human diaphragm disuse. Am J Respir Crit Care Med. 2011;183:483–90.
Hussain SNA, Mofarrahi M, Sigala I, Kim HC, Vassilakopoulos T, Maltais F, et al. Mechanical ventilation–induced diaphragm disuse in humans triggers autophagy. Am J Respir Crit Care Med. 2012;182:1377–86.
Kavazis AN, Talbert EE, Smuder AJ, Hudson MB, Nelson WB, Powers SK. Mechanical ventilation induces diaphragmatic mitochondrial dysfunction and increased oxidant production. Free Radic Biol Med. 2009;46:842–50.
Picard M, Jung B, Liang F, Azuelos I, Hussain S, Goldberg P, et al. Mitochondrial dysfunction and lipid accumulation in the human diaphragm during mechanical ventilation. Am J Respir Crit Care Med. 2012;186:1140–9.
McClung JM, Judge AR, Talbert EE, Powers SK. Calpain-1 is required for hydrogen peroxide-induced myotube atrophy. Am J Physiol. 2009;296:C363–71.
Whidden MA, Smuder AJ, Wu M, Hudson MB, Nelson WB, Powers SK. Oxidative stress is required for mechanical ventilation-induced protease activation in the diaphragm. J Appl Physiol. 2010;108:1376–82.
Agten A, Maes K, Thomas D, Cielen N, van Hees HWH, Dekhuijzen RPN, et al. Bortezomib partially protects the rat diaphragm from ventilator-induced diaphragm dysfunction. Crit Care Med. 2012;40:2449–55.
Gayan-Ramirez G, Testelmans D, Maes K, Rácz GZ, Cadot P, Zádor E, et al. Intermittent spontaneous breathing protects the rat diaphragm from mechanical ventilation effects. Crit Care Med. 2005;33:2804–9.
Thomas D, Maes K, Agten A, Heunks L, Dekhuijzen R, Decramer M, et al. Time course of diaphragm function recovery after controlled mechanical ventilation in rats. J Appl Physiol. 2013;115:775–84.
Van Gammeren D, Falk DJ, DeRuisseau KC, Sellman JE, Decramer M, Powers SK. Reloading the diaphragm following mechanical ventilation does not promote injury. Chest American College of Chest Physicians. 2005;127:2204–10.
Bruells CS, Bergs I, Rossaint R, Du J, Bleilevens C, Goetzenich A, et al. Recovery of diaphragm function following mechanical ventilation in a rodent model. Salluh JIF, editor. PLoS One. 2014;9:e87460.
McConville JF, Kress JP. Weaning patients from the ventilator. N Engl J Med. 2012;367:2233–9.
Boles J-M, Bion J, Connors A, Herridge M, Marsh B, Melot C, et al. Weaning from mechanical ventilation. Eur Respir J European Respiratory Society. 2007;29:1033–56.
Powers SK, Shanely RA, Coombes JS, Koesterer TJ, McKenzie M, Van Gammeren D, et al. Mechanical ventilation results in progressive contractile dysfunction in the diaphragm. J Appl Physiol. 2002;92:1851–8.
Rácz GZ, Gayan-Ramirez G, Testelmans D, Cadot P, de Paepe K, Zádor E, et al. Early changes in rat diaphragm biology with mechanical ventilation. Am J Respir Crit Care Med. 2003;168:297–304.
Bruells CS, Dembinski R. Positive end-expiratory pressure : adjustment in acute lung injury. Anaesthesist. 2012;61:336–43.
Bruells CS, Smuder AJ, Reiss LK, Hudson MB, Nelson WB, Wiggs MP, et al. Negative pressure ventilation and positive pressure ventilation promote comparable levels of ventilator-induced diaphragmatic dysfunction in rats. Anesthesiology. 2013;119:652–62.
Maes K, Testelmans D, Cadot P, Deruisseau K, Powers SK, Decramer M, et al. Effects of acute administration of corticosteroids during mechanical ventilation on rat diaphragm. Am J Respir Crit Care Med. 2008;178:1219–26.
Bruells CS, Maes K, Rossaint R, Thomas D, Cielen N, Bergs I, et al. Sedation using propofol induces similar diaphragm dysfunction and atrophy during spontaneous breathing and mechanical ventilation in rats. Anesthesiology. 2014;120:1.
Martin AD, Smith BK, Davenport PD, Harman E, Gonzalez-Rothi RJ, Baz M, et al. Inspiratory muscle strength training improves weaning outcome in failure to wean patients: a randomized trial. Crit Care BioMed Central Ltd. 2011;15:R84.
Maes K, Testelmans D, Powers S, Decramer M, Gayan-Ramirez G. Leupeptin inhibits ventilator-induced diaphragm dysfunction in rats. Am J Respir Crit Care Med. 2007;175:1134–8.
Smuder AJ, Nelson WB, Hudson MB, Kavazis AN, Powers SK. Inhibition of the ubiquitin-proteasome pathway does not protect against ventilator-induced accelerated proteolysis or atrophy in the diaphragm. Anesthesiology The American Society of Anesthesiologists. 2014;121:115–26.
Sieck GC, Ferreira LF, Reid MB, Mantilla CB. Mechanical properties of respiratory muscles. Compr Physiol. 2013;3:1553–67. Hoboken, NJ, USA: John Wiley & Sons, Inc.
Agten A, Maes K, Smuder A, Powers SK, Decramer M, Gayan-Ramirez G. N-Acetylcysteine protects the rat diaphragm from the decreased contractility associated with controlled mechanical ventilation. Crit Care Med. 2011;39:777–82.
Nelson WB, Smuder AJ, Hudson MB, Talbert EE, Powers SK. Cross-talk between the calpain and caspase-3 proteolytic systems in the diaphragm during prolonged mechanical ventilation. Crit Care Med. 2012;40:1857–63.
McClung JM, Kavazis AN, DeRuisseau KC, Falk DJ, Deering MA, Lee Y, et al. Caspase-3 regulation of diaphragm myonuclear domain during mechanical ventilation-induced atrophy. Am J Respir Crit Care Med. 2007;175:150–9.
Smith IJ, Dodd SL. Calpain activation causes a proteasome-dependent increase in protein degradation and inhibits the Akt signalling pathway in rat diaphragm muscle. Exp Physiol The Physiological Society. 2007;92:561–73.
McClung JM, Kavazis AN, De Ruisseau KC, Falk DJ, Whidden MA, Powers SK. Effects of oxidative stress on PI3K/Akt regulation of FOXO transcription factors during diaphragm muscle disuse. Faseb J. 2007;21:A1306.
Mammucari C, Schiaffino S, Sandri M. Downstream of Akt: FoxO3 and mTOR in the regulation of autophagy in skeletal muscle. Autophagy. 2008;4:524–6.
Vagheggini G, Mazzoleni S, Vlad Panait E, Navalesi P, Ambrosino N. Physiologic response to various levels of pressure support and NAVA in prolonged weaning. Respir Med. 2013;107:1748–54.
Di Mussi R, Spadaro S, Mirabella L, Volta CA, Serio G, Staffieri F, et al. Impact of prolonged assisted ventilation on diaphragmatic efficiency: NAVA versus PSV. Crit Care BioMed Central. 2016;20:1.
Esteban A, Frutos F, Tobin MJ, Alía I, Solsona JF, Valverdú I, et al. A comparison of four methods of weaning patients from mechanical ventilation. Spanish Lung Failure Collaborative Group. N Engl J Med. 1995;332:345–50. Massachusetts Medical Society.
Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358:1327–35.
Jaber S, Jung B, Matecki S, Petrof BJ. Clinical review: ventilator-induced diaphragmatic dysfunction--human studies confirm animal model findings! Crit Care. 2011;15:206.
Hudson MB, Smuder AJ, Nelson WB, Bruells CS, Levine S, Powers SK. Both high level pressure support ventilation and controlled mechanical ventilation induce diaphragm dysfunction and atrophy. Crit Care Med. 2012;40:1254–60.
Futier E, Constantin J-M, Combaret L, Mosoni L, Roszyk L, Sapin V, et al. Pressure support ventilation attenuates ventilator-induced protein modifications in the diaphragm. Crit Care BioMed Central Ltd. 2008;12:R116.
Vaschetto R, Cammarota G, Colombo D, Longhini F, Grossi F, Giovanniello A, et al. Effects of propofol on patient-ventilator synchrony and interaction during pressure support ventilation and neurally adjusted ventilatory assist. Crit Care Med. 2014;42:74–82.
