Influence of viscous dissipation on MHD flow of micropolar fluid over a slendering stretching surface with modified heat flux model

K. Anantha Kumar1, V. Sugunamma2, N. Sandeep3
1Department of Mathematics, Sri Venkateswara University, Tirupati, India
2Department of Mathematics, Sri Venkateswara University, Tirupati, Andhra Prdesh, 517502, India
3Department of Mathematics, Central University of Karnataka, Gulbarga, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Cattaneo C. Sulla conduzione del calore, Atti Semin. Mat Fis Univ Modena Reggio Emilia. 2009;3:83-01.

Christov CI. On frame indifferent formulation of the Maxwell-Cattaneo model of finite speed heat conduction. Mech Res Commun. 2009;36:481–6.

Hayat H, Farooq M, Alsaedi A, Solamy FA. Impact of Cattaneo–Christov heat flux in the flow over a stretching sheet with variable thickness. AIP Adv. 2015;5, 087159.

Anantha Kumar K, Reddy JVR, Sugunamma V, Sandeep N. Magnetohydrodynamic Cattaneo–Christov flow past a cone and a wedge with variable heat source/sink. Alex Eng J. 2018;57:435–43.

Sandeep N, Reddy MG. Heat transfer of nonlinear radiative magneto hydrodynamic Cu-water nanofluid flow over two different geometries. J Mol Liq. 2017;225:87–94.

Bilal S, Malik MY, Awais M, Rehman K, Hussain A, Khan I. Numerical investigation on 2D viscoelastic fluid due to the exponentially stretching surface with magnetic effects: an application of non-Fourier flux theory. Neural Comput Appl. 2017. https://doi.org/10.1007/s00521-016-2832-4 .

Naseem A, Shafiq A, Zhao L, Farook MU. Analytical investigation of third grade nanofluids flow over a riga plate using Cattaneo-Christov model. Res Phys. 2018;9:961–9.

Crane LJ. Flow past a stretching plate. (ZAMP) J Appl Math Phys. 1970;21:645–7.

Anderson HI. MHD flow of a viscoelastic fluid past a stretching surface. Acta Mech. 1992;95:227–30.

Hayat T, Khan MI, Farooq M, Alsaedi A, Waqas M, Yasmeen T. Impact of Cattaneo–Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. Int J Heat Mass Transf. 2016;99:702–10.

Anantha Kumar K, Reddy JVR, Sugunamma V, Sandeep N. Impact of cross diffusion on MHD viscoelastic fluid flow past a melting surface with exponential heat source. Multi Mode Mat Struct. 2018;14:999-016.

Chiam TC. Micropolar fluid flow over a stretching surface. ZAMM. 1982;62:565–8.

Nazar R, Amin N, Filip D, Pop I. Stagnation point flow of a micropolar fluid towards a stretching sheet. Int J Non-Linear Mech. 2004;39:1227–35.

Ishak A, Lok YY, Pop I. Stagnation point flow over a shrinking sheet in a micropolar, fluid. Chem Eng Commun. 2010;197:1417–27.

Gupta D, Kumar L, Beg OA, Singh B. Finite element analysis of MHD flow of micropolar fluid over a shrinking sheet with a convective surface boundary condition. J Eng Thermophys. 2018;27:202–20.

Maleki H, Safaei MR, Alrashed AA, Kasaeian A. Flow and heat transfer in non-Newtonian nanofluids over porous surfaces. J Thermal Anal Calorim. 2019;135:1655–66.

Animasaun IL, Koriko OK, Adegbie KS, Babatunde HA, Ibraheem RO, Sandeep N, Mahanthesh B. Comparative analysis between 36 nm and 47 nm alumina–water nanofluid flows in the presence of Hall effect. J Therm Anal Calorim. 2019;135:873–86.

Cortell R. Effects of viscous dissipation and work done by deformation on the MHD flow and heat transfer of a viscoelastic fluid over a stretching sheet. Phys Lett A. 2006;357:298-05.

Chen CH. Combined effects of Joule heating and viscous dissipation on magnetohydrodynamic flow past a permeable stretching surface with free convection and radiative heat transfer. J Heat Transf. 2010;132, 064503.

Anantha Kuamr K, Sugunamma V, Sandeep N, Reddy JVR. Numerical examination of MHD nonlinear radiative slip motion of non-Newtonian fluid across a stretching sheet in the presence of porous medium. Heat Transf Res. 2019. https://doi.org/10.1615/heattransres.2018026700 .

Novickij V, Grainys A, Svediene J, Markovskaja S, Novickij J. Joule heating influence on the vitality of fungi in pulsed magnetic fields during magnetic permeabilization. J Therm Anal Calorim. 2014;118:681–6.

Sulochana C, Samrat SP, Sandeep N. Boundary layer analysis of an incessant moving needle in MHD radiative nanofluid with Joule heating. Int J Mech Sci. 2017;128–129:326–31.

Hayat T, Asad S, Alsaedi A. Non-uniform heat source/sink and thermal radiation effects on the stretched flow of cylinder in a thermally stratified medium. J Appl Fluid Mech. 2016;10:915–24.

Mehmood K, Hussain S, Sagheer M. Mixed convection flow with non-uniform heat source/sink in a doubly stratified magnetonanofluid. AIP Adv. 2016;6, 065126.

Anantha Kumar K, Sugunamma V, Sandeep N. Numerical exploration of MHD radiative micropolar liquid flow driven by stretching sheet with primary slip: a comparative study. J Non-Equilib Thermodyn. 2018;44:101–22.

Anantha Kumar K, Reddy JVR, Sugunamma V, Sandeep N. Simultaneous solutions for MHD flow of Williamson fluid over a curved sheet with non-uniform heat source/sink. Heat Transf Res. 2019;50:581–603.

Bhattacharyya K, Mukhopadhyay S, Layek GC, Pop I. Effects of thermal radiation on micropolar fluid flow and heat transfer over a porous shrinking sheet. Int J Heat Mass Transf. 2012;55:2945–52.

Ahmad S, Ashraf M, Syed KS. Effects of thermal radiation on MHD axisymmetric stagnation point flow and heat transfer of a micropolar fluid over a shrinking sheet. World Appl Sci J. 2011;15:835–48.

Gupta D, Kumar L, Beg OA, Singh B. Finite-element simulation of mixed convection flow of micropolar fluid over a shrinking sheet with thermal radiation. J Proc Mech Eng (proceedings). 2014;228:61–72.

Kundu PK, Das K, Jana S. MHD micropolar fluid flow with thermal radiation and thermal diffusion in a rotating frame. Bull Malay Math Sci Soc. 2015;38:1185-05.

Haq RU, Nadeem S, Khan ZH, Akbar NS. Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet. Phys E Low-dimens Syst Nanostruct. 2015;65:17–23.

Ramadevi B, Anantha Kumar K, Sugunamma V, Reddy JVR, Sandeep N. Magnetohydrodynamic mixed convective flow of micropolar fluid past a stretching surface using modified Fourier’s heat flux model. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08477-1 .

Dogonchi AS, Tayebi T, Chamkha AJ, Ganji DD. Natural convection analysis in a square enclosure with a wavy circular heater under magnetic field and nanoparticles. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08408-0 .

Dogonchi AS, Chamkha AJ, Ganji DD. A numerical investigation of magneto-hydrodynamic natural convection of Cu–water nanofluid in a wavy cavity using CVFEM. J Therm Anal Calorim. 2019;135(4):2599–611.

Dogonchi AS, Sheremet MA, Ganji DD, Pop I. Free convection of copper–water nanofluid in a porous gap between hot rectangular cylinder and cold circular cylinder under the effect of inclined magnetic field. J Therm Anal Calorim. 2019;135(2):1171–84.

Dogonchi AS, Ismael M, Chamkha AJ, Ganji DD. Numerical analysis of natural convection of Cu-water nanofluid filling triangular cavity with semi-circular bottom wall. J Therm Anal Calorim. 2018;135(6):3485–97.

Anantha Kumar K, Sandeep N, Sugunamma V, Animasaun IL. Effect of irregular heat rise/fall in the radiative thin film flow of MHD hybrid ferrofluid. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08628-4 .

Kumar M, Reddy GJ, Dalir N. Transient entropy analysis of the magnetohydrodynamics flow of a Jeffrey fluid past an isothermal vertical flat plate. Pramana. 2018;91(5):60.