Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Ảnh hưởng của khí thải giao thông đến nồng độ hydrocarbon thơm đa vòng (PAHs) ở các khu vực đô thị và công nghiệp của La Plata, Argentina
Tóm tắt
Hydrocarbon thơm đa vòng (PAHs) được coi là có khả năng độc hại, thậm chí có thể gây ung thư, do ảnh hưởng của chúng đến sức khỏe cộng đồng và môi trường. Cần phải biết các mức độ PAH trong môi trường và nguồn gốc của những chất ô nhiễm này để giảm thiểu chúng. Một kịch bản đáng lo ngại là khi các hoạt động thương mại/hành chính, công nghiệp và khu dân cư cùng tồn tại. Trong bối cảnh này, Gran La Plata (Argentina) có những đặc điểm như vậy, bên cạnh sự hiện diện của một trong những tổ hợp hóa dầu quan trọng nhất của quốc gia và lưu lượng giao thông dày đặc. Nghiên cứu đã xem xét phân bổ nguồn gốc phát thải PAH trong khu vực, liên quan đến các phân đoạn hạt bụi có kích thước 10 µm và 2.5 µm. Đầu tiên, nhiều phương pháp xử lý giá trị thiếu đã được đánh giá cho cơ sở dữ liệu PAH. GSimp cho thấy hiệu suất tốt hơn, với nồng độ trung bình của ∑PAHs là 65.8 ± 40.2 ng m−3 trong PM10 và 39.5 ± 18.0 ng m−3 trong PM2.5. Đối với cả hai phân đoạn, phát hiện rằng đóng góp cao nhất liên quan đến các PAHs có trọng lượng phân tử thấp (3 vòng), với nồng độ cao hơn của anthracen. Các nguồn phát thải đã được xác định bằng phân tích thành phần chính (PCA) kết hợp với hồi quy tuyến tính đa biến (MLR) và tỷ lệ chẩn đoán của PAHs. Kết quả cho thấy nguồn phát thải chính liên quan đến giao thông đường bộ ở cả hai phân đoạn. Phân loại bằng phân tích biệt lập cho thấy các phát thải có thể được nhận diện theo khu vực và fluoranthen, benzo(a)anthracen và anthracen trong PM10 và anthracen cùng phenantren trong PM2.5 là đặc trưng của các phát thải từ tổ hợp hóa dầu.
Từ khóa
Tài liệu tham khảo
Abbasi, S., & Keshavarzi, B. (2019). Source identification of total petroleum hydrocarbons and polycyclic aromatic hydrocarbons in PM10 and street dust of a hot spot for petrochemical production: Asaluyeh County, Iran. Sustainable Cities and Society, 45, 214–230.
Behrentz Valencia, E., Sánchez Morcote, N., & Rivera Contreras, A. J. (2009). Parte 1: Caracterización de Material Particulado y Modelos Receptores. Elementos técnicos del Plan decenal de descontaminación de Bogotá.
Belis, C. A., Larsen, B. R., Amato, F., El Haddad, I., Favez, O., Harrison, R. M., ... & Viana, M. (2014). European guide on air pollution source apportionment with receptor models. JRC reference reports EUR26080 EN.
Bolks, A., DeWire, A., & Harcum, J. B. (2014). Baseline assessment of left-censored environmental data using R. Tech Notes, 10, 28.
Buzcu, B., & Fraser, M. P. (2006). Source identification and apportionment of volatile organic compounds in Houston, TX. Atmospheric Environment, 40(13), 2385–2400.
Carreras, H. A., Calderón-Segura, M. E., Gómez-Arroyo, S., Murillo-Tovar, M. A., & Amador-Muñoz, O. (2013). Composition and mutagenicity of PAHs associated with urban airborne particles in Córdoba, Argentina. Environmental Pollution, 178, 403–410.
Chen, S. C., & Liao, C. M. (2006). Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Science of the Total Environment, 366(1), 112–123.
Cheruiyot, N. K., Lee, W. J., Mwangi, J. K., Wang, L. C., Lin, N. H., Lin, Y. C., & Chang-Chien, G. P. (2015). An overview: Polycyclic aromatic hydrocarbon emissions from the stationary and mobile sources and in the ambient air. Aerosol and Air Quality Research, 15(7), 2730–2762.
Colman Lerner, J. E. (2013). Contaminación ambiental: análisis y mitigación/remoción de material particulado (MP) y compuestos orgánicos volátiles (COVs) y semivolátiles (COSVs) (Doctoral dissertation, Universidad Nacional de La Plata).
Comero, S., Capitani, L., & Gawlik, B. M. (2009). Positive matrix factorisation (PMF)–An introduction to the chemometric evaluation of environmental monitoring data using PMF (p. 59). Office for Official Publications of the European Communities.
de Paula, P. H. M., Mateus, V. L., Araripe, D. R., Duyck, C. B., & Saint’Pierre, T. D., & Gioda, A. (2015). Biomonitoring of metals for air pollution assessment using a hemiepiphyte herb (Struthanthus flexicaulis). Chemosphere, 138, 429–437.
Dotse, S. Q., Asane, J. K., & Ofosu, F. G. (2012). Particulate matter and black carbon concentration levels in Ashaiman, a semi-urban area of Ghana, 2008. Regression and Multilevel/Hierarchical Models, 389–390.
Gelman, A., & Hill, J. (2006). Data analysis using regression and multilevel/hierarchical models. Cambridge University Press.
Geng, F., Cai, C., Tie, X., Yu, Q., An, J., Peng, L., & Xu, J. (2009). Analysis of VOC emissions using PCA/APCS receptor model at city of Shanghai, China. Journal of Atmospheric Chemistry, 62(3), 229–247.
Giuliani, D., Colman Lerner, J. E., & Porta, A. (2021). Human health risk associated to particulate matter and polycyclic aromatic hydrocarbon levels and their relation with preponderant sources in Gran La Plata, Argentina. Environmental Science and Pollution Research, 1–16.
Gogou, A., Stratigakis, N., Kanakidou, M., & Stephanou, E. G. (1996). Organic aerosols in Eastern Mediterranean: Components source reconciliation by using molecular markers and atmospheric back trajectories. Organic Geochemistry, 25(1–2), 79–96.
Gutiérrez, M. D. L. A., Palmieri, M. A., Giuliani, D. S., Colman Lerner, J. E., Maglione, G., Andrinolo, D., & Tasat, D. R. (2020). Monitoring human genotoxicity risk associated to urban and industrial Buenos Aires air pollution exposure. Environmental Science and Pollution Research, 1–12.
Hayakawa, K. (2018). Chemistry of polycyclic aromatic hydrocarbons (PAHs), nitropolycyclic aromatic hydrocarbons (NPAHs) and other oxidative derivatives of PAHs. In Polycyclic aromatic hydrocarbons (pp. 3–10). Springer, Singapore.
Helsel, D. R. (2012). Statistics for censored environmental data using Minitab and R. John Wiley & Sons.
Hopke, P. K. (1985). Receptor modeling in environmental chemistry. John Wiley & Sons.
Hopke, P. K. (2016). Review of receptor modeling methods for source apportionment. Journal of the Air & Waste Management Association, 66(3), 237–259.
Hui, L., Liu, X., Tan, Q., Feng, M., An, J., Qu, Y., & Jiang, M. (2018). Characteristics, source apportionment and contribution of VOCs to ozone formation in Wuhan, Central China. Atmospheric Environment, 192, 55–71.
International Agency for Research on Cancer (IARC). (2016). Outdoor air pollution, Vol. 109. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Lyon: IARC.
Jia, C., & Fu, X. (2020). Characterizing community exposure to atmospheric polycyclic aromatic hydrocarbons (PAHs) in the Memphis Tri-State Area.
Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23(3), 187–200.
Karavalakis, G., Poulopoulos, S., & Zervas, E. (2012). Impact of diesel fuels on the emissions of non-regulated pollutants. Fuel, 102, 85–91.
Katsoyiannis, A., Sweetman, A. J., & Jones, K. C. (2011). PAH molecular diagnostic ratios applied to atmospheric sources: A critical evaluation using two decades of source inventory and air concentration data from the UK. Environmental Science & Technology, 45(20), 8897–8906.
Kavouras, I. G., Koutrakis, P., Tsapakis, M., Lagoudaki, E., Stephanou, E. G., Von Baer, D., & Oyola, P. (2001). Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using multivariate methods. Environmental Science & Technology, 35(11), 2288–2294.
Lammel, G. (2015). Polycyclic aromatic compounds in the atmosphere–A review identifying research needs. Polycyclic Aromatic Compounds, 35(2–4), 316–329.
Lan, S. H., Lan, H. X., Yang, D., & Wu, X. W. (2014). Study of nitro-polycyclic aromatic hydrocarbons in particulate matter in Dongguan. Environmental Science and Pollution Research, 21(12), 7390–7399.
Lanzaco, B. L., López, M. L., Olcese, L. E., & Toselli, B. M. (2019). Elemental composition of PM0.25 collected in an urban site of Argentina: A first case study. Spectrochimica Acta Part B: Atomic Spectroscopy, 161, 105712.
Li, J., Zhang, G., Li, X. D., Qi, S. H., Liu, G. Q., & Peng, X. Z. (2006). Source seasonality of polycyclic aromatic hydrocarbons (PAHs) in a subtropical city, Guangzhou, South China. Science of the Total Environment, 355(1–3), 145–155.
Li, W., Peng, Y., Shi, J., Qiu, W., Wang, J., & Bai, Z. (2011). Particulate polycyclic aromatic hydrocarbons in the urban northeast region of China: Profiles, distributions and sources. Atmospheric Environment, 45(40), 7664–7671.
Little, R. J., & Rubin, D. B. (2019). Statistical analysis with missing data (Vol. 793). John Wiley & Sons.
Liu, W., Xu, Y., Zhao, Y., Liu, Q., Yu, S., Liu, Y., & Liu, W. (2019). Occurrence, source, and risk assessment of atmospheric parent polycyclic aromatic hydrocarbons in the coastal cities of the Bohai and Yellow Seas. China. Environmental Pollution, 254, 113046.
Liu, H., Li, B., Qi, H., Ma, L., Xu, J., Wang, M., & Tian, C. (2021). Source apportionment and toxic potency of polycyclic aromatic hydrocarbons (PAHs) in the air of Harbin, a cold city in Northern China. Atmosphere, 12(3), 297.
López-Noreña, A. I., Berná, L., Tames, M. F., Millán, E. N., Puliafito, S. E., & Fernandez, R. P. (2021). Influence of emission inventory resolution on the modeled spatio-temporal distribution of air pollutants in Buenos Aires, Argentina, using WRF-Chem. Atmospheric Environment, 118839.
Manoli, E., Kouras, A., Karagkiozidou, O., Argyropoulos, G., Voutsa, D., & Samara, C. (2016). Polycyclic aromatic hydrocarbons (PAHs) at traffic and urban background sites of northern Greece: Source apportionment of ambient PAH levels and PAH-induced lung cancer risk. Environmental Science and Pollution Research, 23(4), 3556–3568.
Mellado, D., Gutierrez, M. A., Lerner, J. E. C., Demetrio, P. M., Porta, A. A., Jacovkis, P. M., & Sanchez, E. Y. (2020). Location of areas of emission of pollutants when poor urban air quality is detected. International Journal of Environment and Health, 10(2), 93–106.
Meyers, L. S., Gamst, G., & Guarino, A. J. (2016). Applied multivariate research: Design and interpretation. Sage Publications.
Nagato, E. G. (2018). PAHs and NPAHs in airborne particulate matter: Initial formation and atmospheric transformations. In Polycyclic aromatic hydrocarbons (pp. 11–25). Springer, Singapore.
Nagendra, S. S., Schlink, U., Müller, A., & Khare, M. (2020). Urban air quality monitoring, modelling and human exposure assessment. Springer Singapore Pte. Limited.
Norris, G. A., Duvall, R., Brown, S. G., & Bai, S. (2014). Positive matrix factorization (PMF) 5.0 fundamentals and user guide prepared for the US Environmental Protection Agency. USEPA, Office Res Dev, Washington, DC.
Orazi, M. M., Arias, A. H., Oliva, A. L., Ronda, A. C., & Marcovecchio, J. E. (2020). Characterization of atmospheric and soil polycyclic aromatic hydrocarbons and evaluation of air-soil relationship in the southwest of Buenos Aires province (Argentina). Chemosphere, 240, 124847.
Puliafito, S. E., Bolaño-Ortiz, T. R., Peña, L. L. B., & Pascual-Flores, R. M. (2020). Dataset supporting the estimation and analysis of high spatial resolution inventories of atmospheric emissions from several sectors in Argentina. Data in brief, 29.
Quiterio, S. L., Arbilla, G., Bauerfeldt, G. F., & Moreira, J. C. (2006). Polycyclic aromatic hydrocarbons and their molecular diagnostic ratios in airborne particles (PM10) collected in Rio de Janeiro, Brazil. Water, Air, and Soil Pollution, 179(1), 79–92.
Rashid, M., Yunus, S., Mat, R., Baharun, S., & Lestari, P. (2014). PM10 black carbon and ionic species concentration of urban atmosphere in Makassar of South Sulawesi Province. Indonesia. Atmospheric Pollution Research, 5(4), 610–615.
Ravindra, K., Sokhi, R., & Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmospheric Environment, 42(13), 2895–2921.
Red de Seguridad Alimentaria - Conicet (RSA). (2021). Polvo de Carbón en la región del Gran La Plata, Provincia de Buenos Aires. https://rsa.conicet.gov.ar/wp-content/uploads/2021/03/Informe-Polvo-de-carbon-en-la-region-del-Gran-La-Plata-RSAAC.pdf
R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
Rovira, J., Nadal, M., Schuhmacher, M., & Domingo, J. L. (2021). Environmental impact and human health risks of air pollutants near a large chemical/petrochemical complex: Case study in Tarragona, Spain. Science of the Total Environment, 787, 147550.
Sienra, M. del R., Rosazza, N. G., & Préndez, M. (2005). Polycyclic aromatic hydrocarbons and their molecular diagnostic ratios in urban atmospheric respirable particulate matter. Atmospheric Research, 75(4), 267–281.
Simier, M., Thioulouse, J., & Olivier, J. M. (1998). ADE-4 software: A tool for multivariate analysis and graphical display. Oceanis, 24(4), 393–416.
Singh, A., & Singh, A. K. (2013). ProUCL version 5.0. Technical guide-Statistical software for environmental applications for data sets with and without nondetect observations. EPA: Washington, WA, USA.
Song, Y., Shao, M., Liu, Y., Lu, S., Kuster, W., Goldan, P., & Xie, S. (2007). Source apportionment of ambient volatile organic compounds in Beijing. Environmental Science & Technology, 41(12), 4348–4353.
Thurston, G. D., & Spengler, J. D. (1985). A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmospheric Environment (1967), 19(1), 9–25.
Tobiszewski, M., & Namieśnik, J. (2012). PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution, 162, 110–119.
Viana, M., Pandolfi, M., Minguillón, M. C., Querol, X., Alastuey, A., Monfort, E., & Celades, I. (2008). Inter-comparison of receptor models for PM source apportionment: Case study in an industrial area. Atmospheric Environment, 42(16), 3820–3832.
Wang, X., Zong, Z., Tian, C., Chen, Y., Luo, C., Tang, J., & Zhang, G. (2018). Assessing on toxic potency of PM 2.5-bound polycyclic aromatic hydrocarbons at a national atmospheric background site in North China. Science of the Total Environment, 612, 330–338.
Wei, R., Wang, J., Su, M., Jia, E., Chen, S., Chen, T., & Ni, Y. (2018a). Missing value imputation approach for mass spectrometry-based metabolomics data. Scientific Reports, 8(1), 1–10.
Wei, R., Wang, J., Jia, E., Chen, T., Ni, Y., & Jia, W. (2018b). GSimp: A Gibbs sampler based left-censored missing value imputation approach for metabolomics studies. PLoS Computational Biology, 14(1), e1005973. https://doi.org/10.1371/journal.pcbi.1005973
World Health Organization (WHO). (2006). Air quality guidelines: Global update 2005: Particulate matter, ozone, nitrogen dioxide, and sulfur dioxide. World Health Organization.
Wu, D., Wang, Z., Chen, J., Kong, S., Fu, X., Deng, H., & Wu, G. (2014). Polycyclic aromatic hydrocarbons (PAHs) in atmospheric PM2.5 and PM10 at a coal-based industrial city: Implication for PAH control at industrial agglomeration regions. China. Atmospheric Research, 149, 217–229.
Yuan, B., Shao, M., Lu, S., & Wang, B. (2010). Source profiles of volatile organic compounds associated with solvent use in Beijing. China. Atmospheric Environment, 44(15), 1919–1926.
Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33(4), 489–515.
Zhao, B., Zhang, S., Zhou, Y., He, D., Li, Y., Ren, M., & Fang, J. (2015). Characterization and quantification of PAH atmospheric pollution from a large petrochemical complex in Guangzhou: GC–MS/MS analysis. Microchemical Journal, 119, 140–144.
Zhao, T., Yang, L., Huang, Q., Zhang, Y., Bie, S., Li, J., ... & Wang, W. (2020). PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and their derivatives (nitrated-PAHs and oxygenated-PAHs) in a road tunnel located in Qingdao, China: Characteristics, sources and emission factors. Science of the Total Environment, 720, 137521.