Ảnh hưởng của các loài cây đến sự tích lũy và phân bố chất thải vi sinh trong các khối đất tại các đồn điền cận nhiệt đới ở Trung Quốc
Tóm tắt
Từ khóa
#Chất thải vi sinh; carbon hữu cơ trong đất; sự tích lũy và phân bố; cây cận nhiệt đới; trồng rừng.Tài liệu tham khảo
Bai Z, Liang C, Bodé S, Huygens D, Boeck P (2016) Phospholipid 13C stable isotopic probing during decomposition of wheat residues. Appl Soil Ecol 98:65–74. https://doi.org/10.1016/j.apsoil.2015.09.009
Bai T, Wang P, Ye C, Hu S (2021) Form of nitrogen input dominates N effects on root growth and soil aggregation: a meta-analysis. Soil Biol Biochem 157:108251. https://doi.org/10.1016/j.soilbio.2021.108251
Bardgett RD, Hobbs PJ, Frostegard A (1996) Changes in soil fungal:bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biol Fertil Soils 22:261–264. https://doi.org/10.1007/BF00382522
Chen XL, Ju X, Lin QL (2014) Development status, issues and countermeasures of China’s plantation. World Forest Res 27(6):54–59. https://doi.org/10.13348/j.cnki.sjlyyj.2014.06.008. (in Chinese)
Dorodnikov M, Blagodatskaya E, Blagodatsky S, Fangmeier A, Kuzyakov Y (2009) Stimulation of r- vs. K-selected microorganisms by elevated atmospheric CO2 depends on soil aggregate size. FEMS Microbiol Ecol 69:43–52. https://doi.org/10.1111/j.1574-6941.2009.00697.x
Engelking B, Flessa H, Joergensen RG (2007) Shifts in amino sugar and ergosterol contents after addition of sucrose and cellulose to soil. Soil Biol Biochem 39(8):2111–2118. https://doi.org/10.1016/j.soilbio.2007.03.020
Evangelou VP, Wang J, Phillips RE (1994) New developments and perspectives on soil potassium quantity/intensity relationships. Adv Agron 52:173–227
Feng XJ, Wang SM (2023) Plant influences on soil microbial carbon pump efficiency. Glob Change Biol 00:1–3. https://doi.org/10.1111/gcb.16728
Fernandez CW, Heckman K, Kolka R, Kennedy PG (2019) Melanin mitigates the accelerated decay of mycorrhizal necromass with peatland warming. Ecol Lett 22(3):498–505. https://doi.org/10.1111/ele.13209
Frostegård Å, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65. https://doi.org/10.1007/s003740050076
Guhra T, Ritschel T, Totsche KU (2019) Formation of mineral–mineral and organo–mineral composite building units from microaggregate-forming materials including microbially produced extracellular polymeric substances. Eur J Soil Sci 70(3):604–615. https://doi.org/10.1111/ejss.12774
Guo S, Zhao HB, Zhou GY, Long WG, Gan GL, Wu SY, Meng MY, Chen JL (2022) Biomass and its distribution pattern of four tree species plantation in south subtropical China. Forest Res 35(1):182–189. https://doi.org/10.13275/j.cnki.lykxyj.2022.01.021
Jing YL, Liu SR, Yin Y, Yao Deng JF, Liu YY, Yan PC, Gou KK (2018) Effects of N-fixing tree species (Alnus sibirica) on amino sugars in the soils of a Larix kaempferi plantation in eastern Liaoning Province China. Acta Ecol Sin 38(8):2838–2845. https://doi.org/10.5846/stxb201705150897. (in Chinese)
Jing YL, Tian P, Wang QK, Li WB, Sun ZL, Yang H (2021) Effects of root dominate over aboveground litter on soil microbial biomass in global forest ecosystems. For Ecosyst 8:38. https://doi.org/10.1186/s40663-021-00318-8
Jing YL, Ding XL, Zhao XC, Tian P, Xiao FM, Wang QK (2022) Non-additive effects of nitrogen and phosphorus fertilization on soil microbial biomass and residue distribution in a subtropical plantation. Euro J Soil Biol 108:103376. https://doi.org/10.1016/j.ejsobi.2021.103376
Kallenbach CM, Frey SD, Grandy AS (2016) Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat Commun 7:13630. https://doi.org/10.1038/ncomms13630
Klink S, Keller AB, Wild AJ, Baumert VL, Gube M, Lehndorff E, Meyer N, Mueller CW, Phillips RP, Pausch J (2022) Stable isotopes reveal that fungal residues contribute more to mineral-associated organic matter pools than plant residues. Soil Biol Biochem 168:108634. https://doi.org/10.1016/j.soilbio.2022.108634
Kumar A, Dorodnikov M, Splettstößer T, Kuzyakov Y, Pausch J (2017) Effects of maize roots on aggregate stability and enzyme activities in soil. Geoderma 306:50–57. https://doi.org/10.1016/j.geoderma.2017.07.007
Leifheit EF, Veresoglou SD, Lehmann A, Morris EK, Rillig MC (2014) Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—a meta analysis. Plant Soil 374:523–537. https://doi.org/10.1007/s11104-013-1899-2
Li D, Niu S, Luo Y (2012) Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis. New Phytol 195:172–181. https://doi.org/10.1111/j.1469-8137.2012.04150.x
Liang C, Fujinuma R, Wei L, Balser TC (2006) Tree species-specific effects on soil microbial residues in an upper Michigan old-growth forest system. Forestry 80:65–72. https://doi.org/10.1093/forestry/cpl035
Liang C, Schimel JP, Jastrow JD (2017) The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol 2:17105. https://doi.org/10.1038/nmicrobiol.2017.105
Lu R (2000) Methods of soil agricultural chemistry analysis. Chinese Agricultural Science and Technology Press, Beijing
Ma Q, Scanlan C, Bell R, Brennan R (2013) The dynamics of potassium uptake and use, leaf gas exchange and root growth throughout plant phenological development and its effects on seed yield in wheat (Triticum aestivum) on a low-K sandy soil. Plant Soil 373(1–2):373–384. https://doi.org/10.1007/s11104-013-1812-z
Ma S, Zhu B, Chen G, Ni X, Zhou L, Su H, Cai Q, Chen X, Zhu J, Ji C, Li Y, Fang J (2022) Loss of soil microbial residue carbon by converting a tropical forest to tea plantation. Sci Total Environ 818:151742. https://doi.org/10.1016/j.scitotenv.2021.151742
Ni X, Liao S, Tan S, Peng Y, Wang D, Yue K, Wu F, Yang Y (2020) The vertical distribution and control of microbial necromass carbon in forest soils. Glob Ecol Biogeogr 29(10):1829–1839. https://doi.org/10.1111/geb.13159
Olsson PA, Bååth E, Jakobsen I, Söderström B (1995) The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycol Res 99:623–629. https://doi.org/10.1016/S0953-7562(09)80723-5
Pfeiffer E, Vesterdal L, Beer C, An DS, Steffens C, Schelfhout S (2022) Do tree species affect decadal changes in soil organic carbon and total nitrogen stocks in Danish common garden experiments? Eur J Soil Sci 73:e1320. https://doi.org/10.1111/ejss.13206
Poirier V, Roumet C, Angers DA, Munson AD (2018) Species and root traits impact macroaggregation in the rhizospheric soil of a Mediterranean common garden experiment. Plant Soil 424:289–302. https://doi.org/10.1007/s11104-017-3407-6
Sariyildiz T, Anderson JM, Kucuk M (2005) Effects of tree species and topography on soil chemistry, litter quality, and decomposition in northeast turkey. Soil Biol Biochem 37(9):1695–1706. https://doi.org/10.1016/j.soilbio.2005.02.004
Sattar A, Naveed M, Ali M, Zahir ZA, Nadeem SM, Yaseen M, Meena VS, Farooq M, Singh R, Rahman M, Meena HN (2019) Perspectives of potassium solubilizing microbes in sustainable food production system: a review. Appl Soil Ecol 133:146–159. https://doi.org/10.1016/j.apsoil.2018.09.012
Schermelleh-Engel K, Moosbrugger H, Müller H (2003) Evaluating the fit of structural equation models: tests of significance and descriptive goodness-of-fit measures. Meth Psychol Res 8(2):23–74
Shao P, Liang C, Lynch L, Xie H, Bao X (2019) Reforestation accelerates soil organic carbon accumulation: evidence from microbial biomarkers. Soil Biol Biochem 131:182–190. https://doi.org/10.1016/j.soilbio.2019.01.012
Six J, Elliott ET, Paustian K (2000) Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem 32:2099–2103. https://doi.org/10.1016/s0038-0717(00)00179-6
Six H, Bossuyt S, Degryze K, Denef K (2004) A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil till Re 79:7–31. https://doi.org/10.1016/j.still.2004.03.008
Steffens C, Beer C, Schelfhout S, An DS, Pfeiffer EM, Vesterdal L (2021) Do tree species affect decadal changes in soil organic carbon and total nitrogen stocks in Danish common garden experiments? Euro J Soil Sci 73:13206. https://doi.org/10.1111/ejss.13206
Stemmer M, Gerzabek MH, Kandeler E (1998) Organic matter and enzyme activity in particle-size fractions of soils obtained after low-energy sonication. Soil Biol Biochem 30(1):9–17. https://doi.org/10.1016/S0038-0717(97)00093-X
Strickland MS, Rousk J (2010) Considering fungal:bacterial dominance in soils–methods, controls, and ecosystem implications. Soil Biol Biochem 42(9):1385–1395. https://doi.org/10.1016/j.soilbio.2010.05.007
Su F, Xu S, Sayer EJ, Chen W, Lu X (2021) Distinct storage mechanisms of soil organic carbon in coniferous forest and evergreen broadleaf forest in tropical China. J Environ Manage 295:113142. https://doi.org/10.1016/j.jenvman.2021.113142
Totsche KU, Amelung W, Gerzabek MH, Guggenberger G, Klumpp E, Knief C, Lehndorff E, Mikutta R, Peth S, Prechtel A, Ray N, Kögel-Knabner I (2018) Microaggregates in soils. J Plant Nutr Soil Sci 181:104–136. https://doi.org/10.1002/jpln.201600451
Vesterdal L, Clarke N, Sigurdsson BD, Gundersen P (2013) Do tree species influence soil carbon stocks in temperate and boreal forests? For Ecol Manage 309:4–18. https://doi.org/10.1016/j.foreco.2013.01.017
Wang Q, Zhang W, Sun T, Chen L, Pang X, Wang Y, Xiao F (2017) N and P fertilization reduced soil autotrophic and heterotrophic respiration in a young Cunninghamia lanceolata forest. Agr Forest Meteorol 232:66–73. https://doi.org/10.1016/j.agrformet.2016.08.007
Wang L, Liang YF, Yang JJ, Zhang BB, Wang T, Shi XZ, Hu XW, Huang ZQ (2020a) Characteristics of soil nitrogen retention and related functional microorganism in soils of main afforestation species in subtropical region. Sci Silvae Sin 56(8):27–37. https://doi.org/10.11707/j1001-7488.20200804
Wang X, Yin L, Dijkstra FA, Lu J, Wang P, Cheng W (2020b) Rhizosphere priming is tightly associated with root-driven aggregate turnover. Soil Biol Biochem 149:107964. https://doi.org/10.1016/j.soilbio.2020.107964
Wang B, An S, Liang C, Liu Y, Kuzyakov Y (2021) Microbial necromass as the source of soil organic carbon in global ecosystems. Soil Biol Biochem 162:108422. https://doi.org/10.1016/j.soilbio.2021.108422
Wen SH, Chen JY, Yang ZM, Deng L, Feng J, Zhang W, Zeng XM, Huang QY, Baquerizo MD, Liu RY (2023) Climatic seasonality challenges the stability of microbial-driven deep soil carbon accumulation across China. Glob Change Biol 00:1–10. https://doi.org/10.1111/gcb.16760
Wu PP, Lin KM, Xu N, Shi LN, Chen MY, Zheng WH, Liu SE (2017) Effects of litter diversity on Cunninghamia lanceolata litter decomposition. J Southwest For Univ 37(2):103–108. https://doi.org/10.11929/j.issn.2095-1914. (in Chinese)
Xu Y, Gao X, Liu Y, Li S, Liang C, Lal R, Wang J (2022) Differential accumulation patterns of microbial necromass induced by maize root vs. shoot residue addition in agricultural Alfisols. Soil Biol Biochem 164:108474. https://doi.org/10.1016/j.soilbio.2021.108474
Yang L, Chen S, Li Y, Wang Q, Zhong X, Yang Z, Lin C, Yang Y (2019) Conversion of natural evergreen broadleaved forests decreases soil organic carbon but increases the relative contribution of microbial residue in subtropical China. Forests 10(6):468. https://doi.org/10.3390/f10060468
Yao JB, Chu XL, Zhou ZC, Tong JS, Wang H, Yu JZ (2017) Effects of neighbor competition on growth, fine root morphology and distribution of Schima superba and Cunninghamia lanceolata in different nutrient environments. Chin J Appl Ecol 28(5):1441–1447. https://doi.org/10.13287/j.1001-9332.201705.011. (in Chinese)
Zhang X, Amelung W (1996) Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biol Biochem 28(9):1201–1206. https://doi.org/10.1016/0038-0717(96)00117-4
Zheng XZ, Zhang XX, Lin WS, Liu XF, Chu HY, Li RN, Yang ZJ (2018) Effects of different tree species on soil dissolved organic carbon and microbial biomass carbon in subtropical China. J Fujian Norm Univ 34(6):86–93. https://doi.org/10.12046/j.issn.1000-5277.2018. (in Chinese)
Zheng T, Miltner A, Liang C, Nowak KM, Kästner M (2021) Turnover of gram-negative bacterial biomass-derived carbon through the microbial food web of an agricultural soil. Soil Biol Biochem 152:108070. https://doi.org/10.1016/j.soilbio.2020.108070
Zhu L, Wei WT, Wu RB, Guo HR, Wei XY, Yue K, Ni XY, Wang DY, Wu FZ (2021) Seasonal dynamics of water-soluble carbon, nitrogen and phosphorus in foliar litter of mass on pine and Chinese fir plantation. J Subtropical Resour Environ 16(4):7–14. https://doi.org/10.19687/j.cnki.1673-7105.2021.04.002. (in Chinese)