Ảnh hưởng của các loài cây đến sự tích lũy và phân bố chất thải vi sinh trong các khối đất tại các đồn điền cận nhiệt đới ở Trung Quốc

Ecological Processes - Tập 12 Số 1
Yuanyuan Jing1,2, Xuechao Zhao2,3, Shengen Liu4, Peng Tian5, Zhaolin Sun5, Longchi Chen2, Qingkui Wang2
1Ecology Security and Protection Key Laboratory of Sichuan Province, Mianyang Teachers’ College, Mianyang, China
2Huitong Experimental Station of Forest Ecology, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, China
3University of Chinese Academy of Sciences, Beijing, China
4College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
5School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China

Tóm tắt

Tóm tắt Bối cảnh Chất thải vi sinh đóng vai trò quan trọng trong việc đóng góp cho carbon hữu cơ trong đất (SOC) ổn định. Các khối đất có khả năng bảo vệ hiệu quả các chất thải vi sinh khỏi sự phân hủy; do đó, sự tích lũy và phân bố của chất thải vi sinh giữa các khối đất quyết định sự ổn định SOC lâu dài. Tuy nhiên, cách các loài cây ảnh hưởng đến sự tích lũy và phân bố chất thải vi sinh trong đất vẫn chưa được biết đến nhiều, điều này làm hạn chế khả năng phát triển chính sách quản lý SOC. Ở đây, chúng tôi đã nghiên cứu sự tích lũy và phân bố chất thải vi sinh trong các khối đất dưới bốn loài cây cận nhiệt đới ( Cunninghamia lanceolata , Pinus massoniana , Michelia macclurei , và Schima superba ) sau 29 năm trồng rừng. Kết quả Sự tích lũy chất thải vi sinh trong lớp đất 0–10 cm cao hơn từ 13.8–26.7% dưới S. superba so với các loài cây khác. Một mô hình phương trình cấu trúc cho thấy các loài cây ảnh hưởng trực tiếp đến sự tích lũy chất thải vi sinh bằng cách thay đổi sinh khối nấm. Thêm vào đó, các loài cây ảnh hưởng đáng kể đến sự phân bố và đóng góp của chất thải vi sinh vào SOC trong 20 cm đất đầu. Cụ thể, sự phân bố của chất thải vi sinh giảm từ 17.2–33.4% trong các khối vi mô lớn (LMA) nhưng tăng 60.1–140.7% trong các khối vi mô (MA) dưới S. superba so với các loài khác trong lớp đất 0–10 cm, và giảm 14.3–19.0% trong LMA nhưng tăng 43–52.1% trong MA dưới S. superba so với C. lanceolata M. macclurei trong lớp đất 10–20 cm. Hơn nữa, sự đóng góp của chất thải vi sinh vào SOC cao hơn từ 44.4–47.5% dưới S. superba so với các loài cây khác. Những phát hiện này cho thấy tính ổn định cao hơn của chất thải vi sinh dưới S. superba so với các loài cây khác được nghiên cứu. Kết luận Kết quả của chúng tôi cho thấy các loài cây ảnh hưởng đến sự tồn tại lâu dài của vi sinh trong đất rừng bằng cách tác động đến sự tích lũy và ổn định của chất thải vi sinh.

Từ khóa

#Chất thải vi sinh; carbon hữu cơ trong đất; sự tích lũy và phân bố; cây cận nhiệt đới; trồng rừng.

Tài liệu tham khảo

Bai Z, Liang C, Bodé S, Huygens D, Boeck P (2016) Phospholipid 13C stable isotopic probing during decomposition of wheat residues. Appl Soil Ecol 98:65–74. https://doi.org/10.1016/j.apsoil.2015.09.009

Bai T, Wang P, Ye C, Hu S (2021) Form of nitrogen input dominates N effects on root growth and soil aggregation: a meta-analysis. Soil Biol Biochem 157:108251. https://doi.org/10.1016/j.soilbio.2021.108251

Bardgett RD, Hobbs PJ, Frostegard A (1996) Changes in soil fungal:bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biol Fertil Soils 22:261–264. https://doi.org/10.1007/BF00382522

Chen XL, Ju X, Lin QL (2014) Development status, issues and countermeasures of China’s plantation. World Forest Res 27(6):54–59. https://doi.org/10.13348/j.cnki.sjlyyj.2014.06.008. (in Chinese)

Dorodnikov M, Blagodatskaya E, Blagodatsky S, Fangmeier A, Kuzyakov Y (2009) Stimulation of r- vs. K-selected microorganisms by elevated atmospheric CO2 depends on soil aggregate size. FEMS Microbiol Ecol 69:43–52. https://doi.org/10.1111/j.1574-6941.2009.00697.x

Engelking B, Flessa H, Joergensen RG (2007) Shifts in amino sugar and ergosterol contents after addition of sucrose and cellulose to soil. Soil Biol Biochem 39(8):2111–2118. https://doi.org/10.1016/j.soilbio.2007.03.020

Evangelou VP, Wang J, Phillips RE (1994) New developments and perspectives on soil potassium quantity/intensity relationships. Adv Agron 52:173–227

Feng XJ, Wang SM (2023) Plant influences on soil microbial carbon pump efficiency. Glob Change Biol 00:1–3. https://doi.org/10.1111/gcb.16728

Fernandez CW, Heckman K, Kolka R, Kennedy PG (2019) Melanin mitigates the accelerated decay of mycorrhizal necromass with peatland warming. Ecol Lett 22(3):498–505. https://doi.org/10.1111/ele.13209

Frostegård Å, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65. https://doi.org/10.1007/s003740050076

Guhra T, Ritschel T, Totsche KU (2019) Formation of mineral–mineral and organo–mineral composite building units from microaggregate-forming materials including microbially produced extracellular polymeric substances. Eur J Soil Sci 70(3):604–615. https://doi.org/10.1111/ejss.12774

Guo S, Zhao HB, Zhou GY, Long WG, Gan GL, Wu SY, Meng MY, Chen JL (2022) Biomass and its distribution pattern of four tree species plantation in south subtropical China. Forest Res 35(1):182–189. https://doi.org/10.13275/j.cnki.lykxyj.2022.01.021

Jing YL, Liu SR, Yin Y, Yao Deng JF, Liu YY, Yan PC, Gou KK (2018) Effects of N-fixing tree species (Alnus sibirica) on amino sugars in the soils of a Larix kaempferi plantation in eastern Liaoning Province China. Acta Ecol Sin 38(8):2838–2845. https://doi.org/10.5846/stxb201705150897. (in Chinese)

Jing YL, Tian P, Wang QK, Li WB, Sun ZL, Yang H (2021) Effects of root dominate over aboveground litter on soil microbial biomass in global forest ecosystems. For Ecosyst 8:38. https://doi.org/10.1186/s40663-021-00318-8

Jing YL, Ding XL, Zhao XC, Tian P, Xiao FM, Wang QK (2022) Non-additive effects of nitrogen and phosphorus fertilization on soil microbial biomass and residue distribution in a subtropical plantation. Euro J Soil Biol 108:103376. https://doi.org/10.1016/j.ejsobi.2021.103376

Kallenbach CM, Frey SD, Grandy AS (2016) Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat Commun 7:13630. https://doi.org/10.1038/ncomms13630

Klink S, Keller AB, Wild AJ, Baumert VL, Gube M, Lehndorff E, Meyer N, Mueller CW, Phillips RP, Pausch J (2022) Stable isotopes reveal that fungal residues contribute more to mineral-associated organic matter pools than plant residues. Soil Biol Biochem 168:108634. https://doi.org/10.1016/j.soilbio.2022.108634

Kumar A, Dorodnikov M, Splettstößer T, Kuzyakov Y, Pausch J (2017) Effects of maize roots on aggregate stability and enzyme activities in soil. Geoderma 306:50–57. https://doi.org/10.1016/j.geoderma.2017.07.007

Leifheit EF, Veresoglou SD, Lehmann A, Morris EK, Rillig MC (2014) Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—a meta analysis. Plant Soil 374:523–537. https://doi.org/10.1007/s11104-013-1899-2

Li D, Niu S, Luo Y (2012) Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis. New Phytol 195:172–181. https://doi.org/10.1111/j.1469-8137.2012.04150.x

Liang C, Fujinuma R, Wei L, Balser TC (2006) Tree species-specific effects on soil microbial residues in an upper Michigan old-growth forest system. Forestry 80:65–72. https://doi.org/10.1093/forestry/cpl035

Liang C, Schimel JP, Jastrow JD (2017) The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol 2:17105. https://doi.org/10.1038/nmicrobiol.2017.105

Lu R (2000) Methods of soil agricultural chemistry analysis. Chinese Agricultural Science and Technology Press, Beijing

Ma Q, Scanlan C, Bell R, Brennan R (2013) The dynamics of potassium uptake and use, leaf gas exchange and root growth throughout plant phenological development and its effects on seed yield in wheat (Triticum aestivum) on a low-K sandy soil. Plant Soil 373(1–2):373–384. https://doi.org/10.1007/s11104-013-1812-z

Ma S, Zhu B, Chen G, Ni X, Zhou L, Su H, Cai Q, Chen X, Zhu J, Ji C, Li Y, Fang J (2022) Loss of soil microbial residue carbon by converting a tropical forest to tea plantation. Sci Total Environ 818:151742. https://doi.org/10.1016/j.scitotenv.2021.151742

Ni X, Liao S, Tan S, Peng Y, Wang D, Yue K, Wu F, Yang Y (2020) The vertical distribution and control of microbial necromass carbon in forest soils. Glob Ecol Biogeogr 29(10):1829–1839. https://doi.org/10.1111/geb.13159

Olsson PA, Bååth E, Jakobsen I, Söderström B (1995) The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycol Res 99:623–629. https://doi.org/10.1016/S0953-7562(09)80723-5

Pfeiffer E, Vesterdal L, Beer C, An DS, Steffens C, Schelfhout S (2022) Do tree species affect decadal changes in soil organic carbon and total nitrogen stocks in Danish common garden experiments? Eur J Soil Sci 73:e1320. https://doi.org/10.1111/ejss.13206

Poirier V, Roumet C, Angers DA, Munson AD (2018) Species and root traits impact macroaggregation in the rhizospheric soil of a Mediterranean common garden experiment. Plant Soil 424:289–302. https://doi.org/10.1007/s11104-017-3407-6

Sariyildiz T, Anderson JM, Kucuk M (2005) Effects of tree species and topography on soil chemistry, litter quality, and decomposition in northeast turkey. Soil Biol Biochem 37(9):1695–1706. https://doi.org/10.1016/j.soilbio.2005.02.004

Sattar A, Naveed M, Ali M, Zahir ZA, Nadeem SM, Yaseen M, Meena VS, Farooq M, Singh R, Rahman M, Meena HN (2019) Perspectives of potassium solubilizing microbes in sustainable food production system: a review. Appl Soil Ecol 133:146–159. https://doi.org/10.1016/j.apsoil.2018.09.012

Schermelleh-Engel K, Moosbrugger H, Müller H (2003) Evaluating the fit of structural equation models: tests of significance and descriptive goodness-of-fit measures. Meth Psychol Res 8(2):23–74

Shao P, Liang C, Lynch L, Xie H, Bao X (2019) Reforestation accelerates soil organic carbon accumulation: evidence from microbial biomarkers. Soil Biol Biochem 131:182–190. https://doi.org/10.1016/j.soilbio.2019.01.012

Six J, Elliott ET, Paustian K (2000) Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem 32:2099–2103. https://doi.org/10.1016/s0038-0717(00)00179-6

Six H, Bossuyt S, Degryze K, Denef K (2004) A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil till Re 79:7–31. https://doi.org/10.1016/j.still.2004.03.008

Steffens C, Beer C, Schelfhout S, An DS, Pfeiffer EM, Vesterdal L (2021) Do tree species affect decadal changes in soil organic carbon and total nitrogen stocks in Danish common garden experiments? Euro J Soil Sci 73:13206. https://doi.org/10.1111/ejss.13206

Stemmer M, Gerzabek MH, Kandeler E (1998) Organic matter and enzyme activity in particle-size fractions of soils obtained after low-energy sonication. Soil Biol Biochem 30(1):9–17. https://doi.org/10.1016/S0038-0717(97)00093-X

Strickland MS, Rousk J (2010) Considering fungal:bacterial dominance in soils–methods, controls, and ecosystem implications. Soil Biol Biochem 42(9):1385–1395. https://doi.org/10.1016/j.soilbio.2010.05.007

Su F, Xu S, Sayer EJ, Chen W, Lu X (2021) Distinct storage mechanisms of soil organic carbon in coniferous forest and evergreen broadleaf forest in tropical China. J Environ Manage 295:113142. https://doi.org/10.1016/j.jenvman.2021.113142

Totsche KU, Amelung W, Gerzabek MH, Guggenberger G, Klumpp E, Knief C, Lehndorff E, Mikutta R, Peth S, Prechtel A, Ray N, Kögel-Knabner I (2018) Microaggregates in soils. J Plant Nutr Soil Sci 181:104–136. https://doi.org/10.1002/jpln.201600451

Vesterdal L, Clarke N, Sigurdsson BD, Gundersen P (2013) Do tree species influence soil carbon stocks in temperate and boreal forests? For Ecol Manage 309:4–18. https://doi.org/10.1016/j.foreco.2013.01.017

Wang Q, Zhang W, Sun T, Chen L, Pang X, Wang Y, Xiao F (2017) N and P fertilization reduced soil autotrophic and heterotrophic respiration in a young Cunninghamia lanceolata forest. Agr Forest Meteorol 232:66–73. https://doi.org/10.1016/j.agrformet.2016.08.007

Wang L, Liang YF, Yang JJ, Zhang BB, Wang T, Shi XZ, Hu XW, Huang ZQ (2020a) Characteristics of soil nitrogen retention and related functional microorganism in soils of main afforestation species in subtropical region. Sci Silvae Sin 56(8):27–37. https://doi.org/10.11707/j1001-7488.20200804

Wang X, Yin L, Dijkstra FA, Lu J, Wang P, Cheng W (2020b) Rhizosphere priming is tightly associated with root-driven aggregate turnover. Soil Biol Biochem 149:107964. https://doi.org/10.1016/j.soilbio.2020.107964

Wang B, An S, Liang C, Liu Y, Kuzyakov Y (2021) Microbial necromass as the source of soil organic carbon in global ecosystems. Soil Biol Biochem 162:108422. https://doi.org/10.1016/j.soilbio.2021.108422

Wen SH, Chen JY, Yang ZM, Deng L, Feng J, Zhang W, Zeng XM, Huang QY, Baquerizo MD, Liu RY (2023) Climatic seasonality challenges the stability of microbial-driven deep soil carbon accumulation across China. Glob Change Biol 00:1–10. https://doi.org/10.1111/gcb.16760

Wu PP, Lin KM, Xu N, Shi LN, Chen MY, Zheng WH, Liu SE (2017) Effects of litter diversity on Cunninghamia lanceolata litter decomposition. J Southwest For Univ 37(2):103–108. https://doi.org/10.11929/j.issn.2095-1914. (in Chinese)

Xu Y, Gao X, Liu Y, Li S, Liang C, Lal R, Wang J (2022) Differential accumulation patterns of microbial necromass induced by maize root vs. shoot residue addition in agricultural Alfisols. Soil Biol Biochem 164:108474. https://doi.org/10.1016/j.soilbio.2021.108474

Yang L, Chen S, Li Y, Wang Q, Zhong X, Yang Z, Lin C, Yang Y (2019) Conversion of natural evergreen broadleaved forests decreases soil organic carbon but increases the relative contribution of microbial residue in subtropical China. Forests 10(6):468. https://doi.org/10.3390/f10060468

Yao JB, Chu XL, Zhou ZC, Tong JS, Wang H, Yu JZ (2017) Effects of neighbor competition on growth, fine root morphology and distribution of Schima superba and Cunninghamia lanceolata in different nutrient environments. Chin J Appl Ecol 28(5):1441–1447. https://doi.org/10.13287/j.1001-9332.201705.011. (in Chinese)

Zhang X, Amelung W (1996) Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biol Biochem 28(9):1201–1206. https://doi.org/10.1016/0038-0717(96)00117-4

Zheng XZ, Zhang XX, Lin WS, Liu XF, Chu HY, Li RN, Yang ZJ (2018) Effects of different tree species on soil dissolved organic carbon and microbial biomass carbon in subtropical China. J Fujian Norm Univ 34(6):86–93. https://doi.org/10.12046/j.issn.1000-5277.2018. (in Chinese)

Zheng T, Miltner A, Liang C, Nowak KM, Kästner M (2021) Turnover of gram-negative bacterial biomass-derived carbon through the microbial food web of an agricultural soil. Soil Biol Biochem 152:108070. https://doi.org/10.1016/j.soilbio.2020.108070

Zhu L, Wei WT, Wu RB, Guo HR, Wei XY, Yue K, Ni XY, Wang DY, Wu FZ (2021) Seasonal dynamics of water-soluble carbon, nitrogen and phosphorus in foliar litter of mass on pine and Chinese fir plantation. J Subtropical Resour Environ 16(4):7–14. https://doi.org/10.19687/j.cnki.1673-7105.2021.04.002. (in Chinese)