Ảnh hưởng của độ dung sai đến ước lượng sai số trong các cơ cấu phẳng P3R và 4R

Ankur Jaiswal1, H. P. Jawale2
1Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, (MAHE), Manipal, 576104, Karnataka, India
2Department of Mechanical Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, India

Tóm tắt

AbstractCác cơ cấu bốn thanh tạo thành một cấu hình nguyên thủy của nhiều cơ cấu. Đầu ra của các cơ cấu này thường sai lệch so với mong muốn do nhiều yếu tố, bao gồm cả độ dung sai của các thanh. Để đạt được ứng dụng thỏa mãn, hiệu suất của cơ cấu cần được xác định rõ ràng. Bài báo này trình bày một phương pháp về tổng hợp và phân tích các cấu hình cơ cấu phẳng đầu vào tuyến tính P3R (1-thuận, 3-quay) và đầu vào quay 4R (4-quay), cũng như ước lượng sai số cơ học dưới tác động của độ dung sai thanh. Một phương pháp chi tiết được trình bày để ước lượng sai số như một phần của phân tích hiệu suất cho mỗi cơ cấu. Như một trường hợp minh họa, các cơ cấu được xem xét hoạt động dưới các điều kiện tạo ra đầu ra giống nhau và đánh giá hiệu suất so sánh được thực hiện. Ảnh hưởng của tỉ lệ các thanh được nghiên cứu để điều tra hành vi của cơ cấu liên quan đến sai số cơ học. So sánh sai số cung cấp cơ sở để chọn lựa cơ cấu mang lại hiệu suất tốt hơn. Phương pháp được đề xuất cho thấy sự xác định chung về nguồn gốc sai số cơ học với sự xác thực.

Từ khóa


Tài liệu tham khảo

Hartenberg R, Danavit J (1964) Kinematic synthesis of linkages. McGraw-Hill, New York

Jaiswal A, Jawale H (2017) Comparative study of four-bar hyperbolic function generation mechanism with four and five accuracy points. Arch Appl Mech 87:2037–2054

Choi J-H, Lee S-J, Choi D-H (1998) Stochastic linkage modeling for mechanical error analysis of planar mechanisms. J Struct Mech 26:257–276

Choubey M, Rao A (1982) Synthesizing linkages with minimal structural and mechanical error based upon tolerance allocation. Mech Mach Theory 17:91–97

Garrett R, Hall AS (1969) Effect of tolerance and clearance in linkage design. J Eng Ind 91:198–202

Kolhatkar S, Yajnik K (1970) The effects of play in the joints of a function-generating mechanism. J Mech 5:521–532

Erkaya S, Uzmay İ (2014) Modeling and simulation of joint clearance effects on mechanisms having rigid and flexible links. J Mech Sci Technol 28:2979–2986

Sharfi O, Smith M (1983) A simple method for the allocation of appropriate tolerances and clearances in linkage mechanisms. Mech Mach Theory 18:123–129

Ting K-L, Hsu K-L, Wang J (2017) Clearance-Induced Position Uncertainty of Planar Linkages and Parallel Manipulators. J Mech Robot 9:061001–061011

Flores P (2011) A methodology for quantifying the kinematic position errors due to manufacturing and assembly tolerances. Strojniški vestnik-J Mech Eng 57:457–467

Ting K-L, Zhu J, Watkins D (2000) The effects of joint clearance on position and orientation deviation of linkages and manipulators. Mech Mach Theory 35:391–401

Dhande SG, Chakraborty J (1973) Analysis and synthesis of mechanical error in linkages—a stochastic approach. J Eng Ind 95:672–676

Mallik AK, Dhande SG (1987) Analysis and synthesis of mechanical error in path-generating linkages using a stochastic approach. Mech Mach Theory 22:115–123

Rhyu JH, Kwak BM (1988) Optimal stochastic design of four-bar mechanisms for tolerance and clearance. J Mech Transm Autom Des 110:255–262

Chakraborty J (1975) Synthesis of mechanical error in linkages. Mech Mach Theory 10:155–165

Ting K-L, Long Y (1996) Performance quality and tolerance sensitivity of mechanisms. J Mech Des 118:144–150

Erkaya S, Uzmay I (2009) Determining link parameters using genetic algorithm in mechanisms with joint clearance. Mech Mach Theory 44:222–234

Zhu J, Ting K-L (2000) Uncertainty analysis of planar and spatial robots with joint clearances. Mech Mach Theory 35:1239–1256

Hafezipour M, Khodaygan S (2017) An uncertainty analysis method for error reduction in end-effector of spatial robots with joint clearances and link dimension deviations. Int J Comput Integr Manuf 30:653–663

Zhang X, Zhang X (2016) A comparative study of planar 3-RRR and 4-RRR mechanisms with joint clearances. Robot Comput-Integr Manuf 40:24–33

Chen G, Wang H, Lin Z (2013) A unified approach to the accuracy analysis of planar parallel manipulators both with input uncertainties and joint clearance. Mech Mach Theory 64:1–17

Jawale H, Thorat H (2013) Positional error estimation in serial link manipulator under joint clearances and backlash. J Mech Robot 5:021003

Flores P (2010) A parametric study on the dynamic response of planar multibody systems with multiple clearance joints. Nonlinear Dyn 61:633–653

Flores P, Ambrósio J, Claro JCP, Lankarani H, Koshy C (2006) A study on dynamics of mechanical systems including joints with clearance and lubrication. Mech Mach Theory 41:247–261

Flores P, Ambrósio J, Claro JP (2004) Dynamic analysis for planar multibody mechanical systems with lubricated joints. Multibody SysDyn 12:47–74

Tian Q, Flores P, Lankarani HM (2018) A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints. Mech Mach Theory 122:1–57

Zhan Z, Zhang X, Jian Z, Zhang H (2018) Error modelling and motion reliability analysis of a planar parallel manipulator with multiple uncertainties. Mech Mach Theory 124:55–72

Erkaya S (2018) Effects of joint clearance on the motion accuracy of robotic manipulators. Strojniski Vestnik/J Mech Eng. https://doi.org/10.5545/sv-jme.2017.4534

Cammarata A (2017) A novel method to determine position and orientation errors in clearance-affected overconstrained mechanisms. Mech Mach Theory 118:247–264

Erkaya S (2018) Clearance-induced vibration responses of mechanical systems: computational and experimental investigations. J Braz Soc Mech Sci Eng 40(2):1–12

Erkaya S (2013) Trajectory optimization of a walking mechanism having revolute joints with clearance using ANFIS approach. Nonlinear Dyn 71(1):75–91

Erkaya S, Uzmay I (2010) Experimental investigation of joint clearance effects on the dynamics of a slider-crank mechanism. Multibody Syst Dyn 24:81–102

Erkaya S, Uzmay İ (2009) Investigation on effect of joint clearance on dynamics of four-bar mechanism. Nonlinear Dyn 58:179

Tsai M-J, Lai T-H (2008) Accuracy analysis of a multi-loop linkage with joint clearances. Mech Mach Theory 43:1141–1157

Jawale H, Thorat H (2014) Positional accuracy analysis in serial chain and four-bar closed chain manipulator. In: ASME 2014 international mechanical engineering congress and exposition, American society of mechanical engineers, pp. V011T014A010-V011T014A010

Li X, Ding X, Chirikjian GS (2015) Analysis of angular-error uncertainty in planar multiple-loop structures with joint clearances. Mech Mach Theory 91:69–85

Tsai M-J, Lai T-H (2004) Kinematic sensitivity analysis of linkage with joint clearance based on transmission quality. Mech Mach Theory 39:1189–1206

Wu W, Rao S (2004) Interval approach for the modeling of tolerances and clearances in mechanism analysis. J Mech Des 126:581–592

Zhang D, Han X (2020) Kinematic reliability analysis of robotic manipulator. J Mech Des. https://doi.org/10.1115/1.4044436

Jaiswal A, Jawale H (2016) Comparative study of mechanical error in P3R and 4R manipulators. In: ASME 2016 international design engineering technical conferences and computers and information in engineering conference, American society of mechanical engineers, pp. V05BT07A044-V005BT007A044

Jawale HP, Jaiswal A (2018) Investigation of mechanical error in four-bar mechanism under the effects of link tolerance. J Braz Soc Mech Sci Eng 40:383