Influence of the sintering process on microstructures and microwave properties of Ca5Ni2Mg2V6O24 ceramics
Tài liệu tham khảo
Song, 2018, Ionic occupation, structures, and microwave dielectric properties of Y3MgAl3SiO12 garnet-type ceramics, J. Am. Ceram. Soc., 101, 244, 10.1111/jace.15174
Zhang, 2006, Low-temperature firing and microwave dielectric properties of MgTiO3 ceramics with Bi2O3-V2O5, Mater. Lett., 60, 1188, 10.1016/j.matlet.2005.10.105
Sun, 2009, Silver cofirable (Ca0. 9Mg0. 1)SiO3 microwave dielectric ceramics with Li2CO3-Bi2O3 additive, Ceram. Int., 35, 637, 10.1016/j.ceramint.2008.01.019
Yao, 2017, Low temperature sintering and microwave dielectric properties of Ca5Ni4(VO4)6 ceramics, Ceram. Int., 43, S334, 10.1016/j.ceramint.2017.05.314
Yao, 2013, Novel series of low-firing microwave dielectric ceramics: Ca5A4(VO4)6(A2+=Mg, Zn), J. Am. Ceram. Soc., 96, 1691, 10.1111/jace.12359
Yao, 2014, Low-temperature sintering and microwave dielectric properties of Ca5Co4(VO4)6 ceramics, J. Eur. Ceram. Soc., 34, 2983, 10.1016/j.jeurceramsoc.2014.03.026
Yao, 2016, Microwave dielectric properties of low temperature sintering Ca5Mn4(VO4)6 ceramics, J. Mater. Sci. Mater. Electron., 27, 7292, 10.1007/s10854-016-4697-9
Demeter, 2000, Mixed-valence vanadium oxides studied by XPS, Surf. Sci., 454–456, 41, 10.1016/S0039-6028(00)00111-4
Biesinger, 2010, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn, Appl. Surf. Sci., 257, 887, 10.1016/j.apsusc.2010.07.086
Shannon, 1976, Revised effective ionic radii in halides and chalcogenides, and systematic studies of interatomic distances, Acta Crystallogr. E, 32, 751, 10.1107/S0567739476001551
Tang, 2017, Two novel low-firing Na2AMg2V3O12 (A=Nd, Sm) ceramics and their chemical compatibility with silver, Ceram. Int., 43, 2892, 10.1016/j.ceramint.2016.11.099
Kim, 1987, Structural transformations in the decomposition of Mg(OH)2 and MgCO3, J. Am. Ceram. Soc., 70, 146, 10.1111/j.1151-2916.1987.tb04949.x
Morozov, 1938, System CaO-V2O5, figure 00251
Wollast, 1969, System MgO-V2O5, figure 04341
Kozhevnikov, 1988, System NiO-V2O5, figure 09255
Arapova, 1981
Parker, 1982, Investigation of the system CaO-MgO-V2O5: I, phase equilibria, J. Am. Ceram. Soc., 65, 349, 10.1111/j.1151-2916.1982.tb10469.x
Parker, 1982, Investigation of the system CaO-MgO-V2O5: II, crystalline solutions and crystal chemistry, J. Am. Ceram. Soc., 65, 454, 10.1111/j.1151-2916.1982.tb10513.x
Parhi, 2008, Synthesis and characterization of M3V2O8 (M = Ca, Sr and Ba) by a solid-state metathesis approach, Bull. Mater. Sci., 31, 885, 10.1007/s12034-008-0141-y
Jo, 2015, Effect of Sn4+ substitution on microwave dielectric properties of (Mg0. 95Ni0. 05)(Ti1−xSnx)O3 ceramics, Mater. Res. Bull., 67, 221, 10.1016/j.materresbull.2014.07.041
Neelakantan, 2015, Structure and microwave dielectric properties of ultralow-temperature cofirable BaV2O6 ceramics, Eur. J. Inorg. Chem., 2, 305, 10.1002/ejic.201402844
Singh, 2016, Microwave dielectric properties of Li2SrTa2(1− x)Nb2xO7 ceramics investigated by Raman spectroscopy, Ceram. Int., 42, 7284, 10.1016/j.ceramint.2016.01.124
Surendran, 2005, Effect of nonstoichiometry on the structure and microwave dielectric properties of Ba(Mg0.33Ta0.67), O3, Chem. Mater., 17, 142, 10.1021/cm048411s
Lai, 2017, Relationship between the structure and microwave dielectric properties of non-stoichiometric Li2+xSiO3 ceramics, Ceram. Int., 43, 2664, 10.1016/j.ceramint.2016.11.079
Chen, 2006, Microwave properties of Ba(Mg1/3Ta2/3)O3, Ba(Mg1/3Nb2/3)O3 and Ba(Co1/3Nb2/3)O3 ceramics revealed by Raman scattering, J. Eur. Ceram. Soc., 26, 1965, 10.1016/j.jeurceramsoc.2005.09.042