Influence of the leaving group on the dynamics of a gas-phase SN2 reaction
Tóm tắt
Từ khóa
Tài liệu tham khảo
Vollhardt, K. P. C. & Shore, N. E. Organic Chemistry: Structure and Function (W. H. Freeman, 2005).
Olmstead, W. N. & Brauman, J. I. Gas-phase nucleophilic displacement reactions. J. Am. Chem. Soc. 99, 4219–4228 (1977).
Shaik, S. S. The collage of SN2 reactivity patterns—a state correlation diagram model. Prog. Phys. Org. Chem. 15, 197–337 (1985).
Viggiano, A. A., Morris, R. A., Paschkewitz, J. S. & Paulson, J. F. Kinetics of the gas-phase reactions of chloride anion, Cl− with CH3Br and CD3Br: experimental evidence for nonstatistical behavior? J. Am. Chem. Soc. 114, 10477–10482 (1992).
Hase, W. L. Simulations of gas-phase chemical reactions: applications to SN2 nucleophilic substitution. Science 266, 998–1002 (1994).
Chabinyc, M. L., Craig, S. L., Regan, C. K. & Brauman, J. I. Gas-phase ionic reactions: dynamics and mechanism of nucleophilic displacements. Science 279, 1882–1886 (1998).
Laerdahl, J. K. & Uggerud, E. Gas phase nucleophilic substitution. Int. J. Mass Spectrom. Ion Phys. 214, 277–314 (2002).
Bento, A. P. & Bickelhaupt, F. M. Nucleophilicity and leaving-group ability in frontside and backside SN2 reactions. J. Org. Chem. 73, 7290–7299 (2008).
Garver, J. M., Gronert, S. & Bierbaum, V. M. Experimental validation of the alpha-effect in the gas phase. J. Am. Chem. Soc. 133, 13894–13897 (2011).
Kretschmer, R., Schlangen, M. & Schwarz, H. Efficient and selective gas-phase monomethylation versus N–H bond activation of ammonia by bare Zn(CH3)+: atomic zinc as a leaving group in an SN2 reaction. Angew. Chem. Int. Ed. 50, 5387–5391 (2011).
Otto, R. et al. Single solvent molecules can affect the dynamics of substitution reactions. Nature Chem. 4, 534–538 (2012).
Xie, J. et al. Identification of atomic-level mechanisms for gas-phase X−+CH SN2 reactions by combined experiments and simulations. Acc. Chem. Res. 47, 2960–2969 (2014).
Fernández, I. & Bickelhaupt, F. M. The activation strain model and molecular orbital theory: understanding and designing chemical reactions. Chem. Soc. Rev. 43, 4953–4967 (2014).
Szabó, I. & Czakó, G. Revealing a double-inversion mechanism for the F−+CH3Cl SN2 reaction. Nature Commun. 6, 5972 (2015).
Thallmair, S., Kowalewski, M., Zauleck, J. P. P., Roos, M. K. & de Vivie-Riedle, R. Quantum dynamics of a photochemical bond cleavage influenced by the solvent environment: a dynamic continuum approach. J. Phys. Chem. Lett. 5, 3480–3485 (2014).
Orr-Ewing, A. J. Perspective: bimolecular chemical reaction dynamics in liquids. J. Chem. Phys. 140, 090901 (2014).
Garver, J. M. et al. A direct comparison of reactivity and mechanism in the gas phase and in solution. J. Am. Chem. Soc. 132, 3808–3814 (2010).
Liu, S., Hu, H. & Pedersen, L. G. Steric, quantum, and electrostatic effects on SN2 reaction barriers in gas phase. J. Phys. Chem. A 114, 5913–5918 (2010).
DeTuri, V. F., Hintz, P. A. & Ervin, K. M. Translational activation of the SN2 nucleophilic displacement reactions Cl− + CH3Cl (CD3Cl) → ClCH3 (ClCD3) + Cl−: a guided ion beam study. J. Phys. Chem. A 101, 5969–5986 (1997).
Anderson, J. S. M., Liu, Y., Thomson, J. W. & Ayers, P. W. Predicting the quality of leaving groups in organic chemistry: tests against experimental data. J. Mol. Struct. THEOCHEM 943, 168–177 (2010).
Jaramillo, P., Domingo, L. R. & Pérez, P. Towards an intrinsic nucleofugality scale: the leaving group (LG) ability in CH3LG model system. Chem. Phys. Lett. 420, 95–99 (2006).
Eppink, A. T. J. B. & Parker, D. H. Velocity map imaging of ions and electrons using electrostatic lenses: application in photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum. 68, 3477 (1997).
Mikosch, J. et al. Indirect dynamics in a highly exoergic substitution reaction. J. Am. Chem. Soc. 135, 4250–4259 (2013).
Sun, R., Davda, C. J., Zhang, J. & Hase, W. L. Comparison of direct dynamics simulations with different electronic structure methods. F− + CH3I with MP2 and DFT/B97-1. Phys. Chem. Chem. Phys. 17, 2589–2597 (2015).
Angel, L. A. & Ervin, K. M. Dynamics of the gas-phase reactions of fluoride ions with chloromethane. J. Phys. Chem. A 105, 4042–4051 (2001).
Su, T., Wang, H. & Hase, W. L. Trajectory studies of SN2 nucleophilic substitution F− + CH3Cl → FCH3 + Cl−. J. Phys. Chem. A 102, 9819–9828 (1998).
Zhang, J. et al. F− + CH3I → FCH3 + I− Reaction dynamics. nontraditional atomistic mechanisms and formation of a hydrogen-bonded complex. J. Phys. Chem. Lett. 1, 2747–2752 (2010).
Xie, J. et al. Direct dynamics simulations of the product channels and atomistic mechanisms for the OH– + CH3I reaction. Comparison with experiment. J. Phys. Chem. A 117, 7162–7178 (2013).
Vanorden, S. L., Pope, R. M. & Buckner, S. W. Energy disposal in gas-phase nucleophilic displacement reactions. Org. Mass Spectrom. 26, 1003–1007 (1991).
Lide, D. R. (ed.) Handbook of Chemistry and Physics (CRC Press, 2003).
Su, T., Morris, R. A., Viggiano, A. A. & Paulson, J. F. Kinetic energy and temperature dependences for the reactions of fluoride with halogenated methanes: experiment and theory. J. Phys. Chem. 94, 8426–8430 (1990).
Wester, R. Velocity map imaging of ion–molecule reactions. Phys. Chem. Chem. Phys. 16, 396–405 (2014).