Influence of the foil material on the uniformity of the mechanical pressure pulse in electrical explosion of metal foils

Journal of Applied Mechanics and Technical Physics - Tập 56 - Trang 136-142 - 2015
A. N. Grigoriev1, E. I. Karnaukhov1, A. V. Pavlenko1, V. S. Sedoi1
1Zababakhin Institute of Technical Physics (VNIITF), Russian Federation Nuclear Center, Snezhinsk, Russia

Tóm tắt

This paper presents the results of an experimental study of the temporal waveforms of the pressure amplitude in different regions of flat electrically exploded foils of M1T copper, AD1M aluminum, L63 brass, 80NKhS nickel alloy, VT1-00 titanium, and tin-clad lead. In the case of high-conductivity foils, explosion starts from the foil ends with a subsequent stronger growth of pressure in the centrally axial region of the exploded foil. It is shown that the electrical resistivity of the exploded metal is an important parameter that influences the uniformity and simultaneity of the explosion.

Tài liệu tham khảo

A. P. Baikov, V. A. Belago, A. M. Iskol’dskii, et al., “Electrical Explosion of Foils,” Fiz. Goreniya Vzryva 9(2), 286–291 (1973) [Combust., Expl., Shock Waves 9 (2), 246–250 (1973)]. A. P. Baikov, A. E. Voitenko, A. M. Iskol’dskii, et al., “Initiation of Explosion over the Charge Surface,” Fiz. Goreniya Vzryva 9(2), 323–325 (1973) [Combust., Expl., Shock Waves 9 (2), 279–280 (1973)]. D. Keller and J. Penning, “Exploding Foils-the Production of Plane Shock Waves and the Acceleration of thin Plates,” in Exploding Wires (Plenum Press, New York, 1962), Vol. 2, pp. 259–262. A. V. Ostrik and V. P. Petrovskii, “Spalling Failure in a Polymer Cylinder on Unsymmetrical Pulse Loading,” Prikl. Mekh. Tekh. Fiz., No. 1, 133–137 (1993) [J. Appl. Mekh. Tekh. Phys. No. 1, 128–131 (1993)]. A. V. Pavlenko, V. N. Afanas’ev, Yu. A. Kucherenko, et al., “Possibilities of Laboratory Complex “GNUV” for Studying the Mechanical Properties of Materials in the Wide Range of Impulse Loading,” in Proc. of the 14th IEEE Int. Pulsed Power Conf., Dallas (USA), June 15–18, 2003, pp. 902–904. A. D. Zaitsev, A. V. Ostrik, V. P. Petrovskii, et al., “Determination of Shock-Wave Characteristics of Composite Materials by Means of Electrical Explosion of Conductors,” Konstr. Kompoz. Mater., No. 2, 30–35 (2001). R. A. Graham, F. W. Neilson, and W. B. Benedick, “Piezoelectric Current from Shock-Loaded Quartz-a Submicrosecond Stress Gauge,” J. Appl. Phys. 36(5), 1775–1783 (1965). A. N. Grigoriev and A. V. Pavlenko, “Characteristics of a Multi-Channel Surface Discharge Switch for a High Current Generator,” IEEE Trans. Dielectric Electr. Insul. 14(4), 964–967 (2007). Physical Quantities: Handbook, Ed. by I. S. Grigor’ev and E. Z. Melikhov (Energoatomizdat, Moscow, 1991) [in Russian]. Russian State Standard (GOST) No. 10160-75: Precision Magnetic Soft Alloys, Adopted 01.01.1976. Russian State Standard (GOST) No. 18394-73: Lead, Tin-Clad, and Tin Foils, Adopted 01.01.1974. A. N. Grigor’ev and A. V. Pavlenko, “Pressure in Electrical Explosion of Metal Foils,” Pis’ma Zh. Tekh. Fiz. 35(18), 65–72 (2009).