Influence of the bisphenol structure on the direct synthesis of sulfonated poly(arylene ether) copolymers. I

Wiley - Tập 41 Số 14 - Trang 2264-2276 - 2003
William Harrison1, Feng Wang1, Jeffrey B. Mecham1, V. A. Bhanu1, Melinda Hill1, Yu Seung Kim1, James E. McGrath1
1Department of Chemistry and Materials Research Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

Tóm tắt

AbstractNew sulfonated poly(arylene ether sulfone) copolymers with high molecular weights were successfully synthesized with controlled degrees of disulfonation of up to 70 mol % via the direct copolymerization of sulfonated aromatic dihalides, aromatic dihalides, and one of four structurally distinct bisphenols. The disodium salts of the 3,3′‐disulfonated‐4,4′‐dichlorodiphenyl sulfone and 3,3′‐disulfonated‐4,4′‐difluorodiphenyl sulfone comonomers were synthesized via the sulfonation of 4,4′‐dichlorodiphenyl sulfone or 4,4′‐difluorodiphenyl sulfone with 30% fuming sulfuric acid at 110 °C. Four bisphenols (4,4′‐bisphenol A, 4,4′‐bisphenol AF, 4,4′‐biphenol, and hydroquinone) were investigated for the syntheses of novel copolymers with controlled degrees of sulfonation. The composition and incorporation of the sulfonated repeat unit into the copolymers were confirmed by 1H NMR and Fourier transform infrared spectroscopy. Solubility tests on the sulfonated copolymers confirmed that no crosslinking and probably no branching occurred during the copolymerizations. Tough, ductile films were solvent‐cast that exhibited increased water absorption with increasing degrees of sulfonation. These copolymers are promising candidates for high temperature proton‐exchange membranes in fuel cells, which will be reported separately in part II of this series. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2264–2276, 2003

Từ khóa


Tài liệu tham khảo

Robeson L. M., 1978, Midland Macromol Inst Monogr, 4, 405

10.1021/ma00161a017

Cotter R. J., 1995, Engineering Plastics: Handbook of Polyarylethers

Wang S., 2003, Step Polymerization

Johnson R. N., 1967, J Polym Sci Polym Chem Ed, 5, 2375, 10.1002/pol.1967.150050916

Johnson R. N., 1969, Encyclopedia of Polymer Science and Technology

Clagett D. C., 1986, 94

10.1002/app.1976.070200717

10.1002/pol.1984.170220320

Quentin J. P.(Rhone‐Poulenc). U.S. Patent 3 709 841 1973.

10.1016/0376-7388(93)85268-2

Chao H. S.;Kelsey D. R.(Union Carbide). U.S. Patent 4 625 000 1986.

10.1016/S0167-2738(01)00912-2

10.1002/pol.1984.170220202

Steck A.;Stone C.In Proceedings of the Second International Symposium on New Materials for Fuel Cells and Modern Battery Systems Montreal Canada July 6–10 1997; Savadogo O.; Roberge P. R. Eds.

10.1016/S0378-7753(97)02816-4

10.1016/0032-3861(87)90178-9

10.1021/ma00143a014

10.1002/(SICI)1099-0518(19960915)34:12<2421::AID-POLA17>3.0.CO;2-A

10.1002/(SICI)1099-0518(19980715)36:9<1441::AID-POLA12>3.0.CO;2-4

10.1002/(SICI)1521-3935(19980701)199:7<1421::AID-MACP1421>3.0.CO;2-P

10.1016/S0032-3861(98)00292-4

10.1107/S0108270198016710

Mercier R.; et al. Proceedings of the 5th European Technical Symposium on Polyimides and High Performance Functional Polymers Montpellier France May 3–5 1999.

10.1016/S0032-3861(00)00384-0

Gunduz N., 2000, Polym Prepr (Am Chem Soc Div Polym Sci), 41, 1565

McGrath J. E., 2002, Polym Prepr (Am Chem Soc Div Polym Sci), 43

Einsla B. R., 2003, J Polym Sci Part A: Polym Chem

Wang F., 2000, Polym Prepr (Am Chem Soc Div Polym Sci), 40, 1401

Sankir M., 2003, Polym Prepr (Am Chem Soc Div Polym Sci)

Shobha H. K., 2000, Polym Prepr (Am Chem Soc Div Polym Sci), 40, 180

10.1002/1521-3900(200110)175:1<387::AID-MASY387>3.0.CO;2-1

Wang F., 2003, Macromol Symp

Robeson L. M.;Matzner M.U.S. Patent 4 380 598 1983.

Ueda M., 1993, J Polym Sci Part A: Polym Chem, 31, 85

Appleby A. J., 1989, Fuel Cell Handbook

Zalbowitz M., 1999, Fuel Cells: Green Power

10.1016/S0376-7388(01)00620-2

Kim Y. S., 2003, J Polym Sci Part B: Polym Phys

Wilkes G. L., 1997, Ionomers: Synthesis, Structure, Properties and Applications

Wang F., 2000, Polym Prepr (Am Chem Soc Div Polym Chem), 40, 180

Wiles K. E., 2002, Polym Prepr (Am Chem Soc Div Polym Chem), 42

The degree of sulfonation in the 6F‐30 copolymer via1H NMR was determined as follows. With the integration for 2 −kprotons (Ik) and the integration for 8 − (a+b) protons [I(a+b)] ifIkequals 3.6 andI(a+b) equals 52.8 then (Ik/2 protons) ÷ {[I(a+b)]/8 protons} = percentage of sulfonated repeat units. Therefore (3.6/2) ÷ (52.8/8) = 1.8 ÷ 6.6 = 0.273 × 100% = 27.3% sulfonated repeat units.

10.1016/S0376-7388(00)00345-8

10.1149/1.1836669

10.1021/ma951073j

10.1016/0032-3861(72)90085-7