Influence of the aggregate on the electrical conductivity of Portland cement concretes
Tài liệu tham khảo
A. van Beek, Dielectric properties of young concrete-non-destructive dielectric sensor for monitoring the strength development of young concrete, PhD Thesis, Delft University of Technology, Delft, 2000.
Leivo, 1996, Radio wave heating of concrete, Cem. Concr. Res., 26, 677, 10.1016/S0008-8846(96)85003-4
Gallone, 2000, Maturazione a microonde di materiali cementizi a elevate prestazioni, vol. 1, 135
Levita, 2000, Metodi elettrici nella tecnologia di malte e calcestruzzi, vol. I, 287
Alexander, 1968, vol. III, 152
Gilkey, 1961, Water-cement ratio versus strength: another look, ACI J., 57–55, 1287
Walz, 1970, Beziehung zwischen wasserzementwert, normfestigkeit des zements (DIN 1164) und betondruckfestigkeit, Beton, 11, 499
Scrivener, 1988, Quantitative characterization of the transition zone in high strength concretes, Adv. Cem. Res., I, 230, 10.1680/adcr.1988.1.4.230
Ping, 1991, Flat-aggregate Portland cement paste interfaces: I. Electrical conductivity models, Cem. Concr. Res., 21, 515, 10.1016/0008-8846(91)90101-M
Costa, 1990, Permeability of the cement-aggregate interface: influence of the type of cement, water/cement ratio and superplasticizer, 392
Scrivener, 1996, The percolation of pore space in the cement paste/aggregate interfacial zone of concrete, Cem. Concr. Res., 26, 35, 10.1016/0008-8846(95)00185-9
Halamicova, 1995, Water permeability and chloride ion diffusion in Portland cement mortars: relationship to sand content and critical pore diameter, Cem. Concr. Res., 25, 790, 10.1016/0008-8846(95)00069-O
Shane, 2000, Effect of the interfacial transition zone on the conductivity of Portland cement mortars, J. Am. Ceram. Soc., 83, 1137, 10.1111/j.1151-2916.2000.tb01344.x
Levita, 2000, Electrical properties of fluidified Portland cement mixes in the early stage of hydration, Cem. Concr. Res., 30, 923, 10.1016/S0008-8846(00)00282-9
Torrents, 1998, Utilization of impedance spectroscopy for studying the retarding effect of a superplasticizer on the setting of cement, Cem. Concr. Res., 28, 1325, 10.1016/S0008-8846(98)00110-0
K. van Breugel, Simulation of hydration and formation of structure in hardening cement-based materials, PhD Thesis (revised edition), Technical University Delft, 1997.
E.A.B. Koenders, Simulation of volume changes in hardening cement-based materials, PhD Thesis, Technical University Delft, 1997.
Benz, 1993, Computer modelling of the interfacial transition zone in concrete, 259
Garboczi, 1998, Multi-scale analytical/numerical theory of the diffusivity of concrete, Adv. Cem. Based Mater., 8, 77, 10.1016/S1065-7355(98)00010-8
Benz, 1999, A hard core/soft shell microstructural model for studying percolation and transport in three-dimensional composite media NIST, vol. 6265
McLaughlin, 1977, A study of the differential scheme for composite materials, Int. J. Eng. Sci., 15, 237, 10.1016/0020-7225(77)90058-1
Schwartz, 1995, Interfacial transport in porous media: application to D.C. electrical conductivity of mortars, J. Appl. Phys., 78, 5898, 10.1063/1.360591
Lu, 1992, Nearest-surface distribution functions for polydispersed particle systems, Phys. Rev., A, 45, 5530, 10.1103/PhysRevA.45.5530
Princigallo, 2001, Advancements in modelling the development of microstructure in cement pastes
A. Princigallo, Doctorate dissertation, Politechnic of Milan, Milano, 2002.
Clemmens, 2000, Correlating the deviation point between external and total chemical shrinkage with setting time and other characteristics of hydrating cement paste
Turner, 1976, The electrical conductance of liquid-fluidized beds of spheres, Chem. Eng. Sci., 31, 487, 10.1016/0009-2509(76)80034-6
Sigrist, 1980, On the conductivity and void fraction of gas dispersions in electrolyte solutions, J. Appl. Electrochem., 10, 223, 10.1007/BF00726089
Winslow, 1994, Percolation and pore structure inmortars and concrete, Cem. Concr. Res., 24, 25, 10.1016/0008-8846(94)90079-5
Bentz, 1997, Multi-scale modeling of the diffusivity of mortar and concrete