Influence of soil-structure interaction on the dynamic characteristics of railroad frame bridges
Tài liệu tham khảo
Rücker, 2006, Experimentelle Untersuchungen zu Schotterfahrwegen auf Brücken, 397
DIN EN 1990:2010-12, Eurocode: Grundlagen der Tragwerksplanung; Deutsche Fassung EN_1990:2002_+ A1:2005_+ A1:2005/AC:2010. Berlin: Beuth Verlag GmbH. https://doi.org/10.31030/1723955.
2013
Li, 1999, The resonant vibration for a simply supported girder bridge under high-speed trains, J Sound Vib, 224, 897, 10.1006/jsvi.1999.2226
Frýba, 2001, A rough assessment of railway bridges for high speed trains, Eng Struct, 23, 548, 10.1016/S0141-0296(00)00057-2
Xia, 2006, Analysis of resonance mechanism and conditions of train–bridge system, J Sound Vib, 297, 810, 10.1016/j.jsv.2006.04.022
Museros, 2005, Influence of the second bending mode on the response of high-speed bridges at resonance, J Struct Eng, 131, 405, 10.1061/(ASCE)0733-9445(2005)131:3(405)
Martínez-Rodrigo, 2010, Dynamic performance of existing high-speed railway bridges under resonant conditions retrofitted with fluid viscous dampers, Eng Struct, 32, 808, 10.1016/j.engstruct.2009.12.008
Martínez-Rodrigo, 2010, Transverse vibrations in existing railway bridges under resonant conditions: single-track versus double-track configurations, Eng Struct, 32, 1861, 10.1016/j.engstruct.2010.02.022
Mähr, 2009
Song, 2003, A new three-dimensional finite element analysis model of high-speed train–bridge interactions, Eng Struct, 25, 1611, 10.1016/S0141-0296(03)00133-0
Kwark, 2004, Dynamic behavior of two-span continuous concrete bridges under moving high-speed train, Comput Struct, 82, 463, 10.1016/S0045-7949(03)00054-3
Liu, 2009, The effect of dynamic train–bridge interaction on the bridge response during a train passage, J Sound Vib, 325, 240, 10.1016/j.jsv.2009.03.021
Hirzinger, 2020, Dynamic response of a non-classically damped beam with general boundary conditions subjected to a moving mass-spring-damper system, Int J Mech Sci, 185
Yang, 2004
Bigelow, 2017, Soil-structure interaction at railway bridges with integral abutments, Procedia Eng, 199, 2318, 10.1016/j.proeng.2017.09.204
Zangeneh, 2018, Identification of soil-structure interaction effect in a portal frame railway bridge through full-scale dynamic testing, Eng Struct, 159, 299, 10.1016/j.engstruct.2018.01.014
Fiorentino, 2021, Integral abutment bridges: investigation of seismic soil‐structure interaction effects by shaking table testing, Earthq Eng Struct Dynam, 50, 1517, 10.1002/eqe.3409
Spyrakos, 2003, Seismic behavior of a post-tensioned integral bridge including soil–structure interaction (SSI), Soil Dynam Earthq Eng, 23, 53, 10.1016/S0267-7261(02)00150-1
Ülker-Kaustell, 2010, Simplified analysis of the dynamic soil–structure interaction of a portal frame railway bridge, Eng Struct, 32, 3692, 10.1016/j.engstruct.2010.08.013
Wilson, 1990, Bridge abutments: formulation of simple model for earthquake response analysis, J Eng Mech, 116, 1828, 10.1061/(ASCE)0733-9399(1990)116:8(1828)
Inel, 2004, Seismic design of columns of short bridges accounting for embankment flexibility, J Struct Eng, 130, 1515, 10.1061/(ASCE)0733-9445(2004)130:10(1515)
Zhang, 2002, Kinematic response functions and dynamic stiffnesses of bridge embankments, Earthq Eng Struct Dynam, 31, 1933, 10.1002/eqe.196
Salcher, 2020, Effekt der Boden‐Bauwerksinteraktion auf die Dynamik rahmenartiger Eisenbahnbrücken, Bautechnik, 97, 490, 10.1002/bate.202000005
Romero, 2013, Soil–structure interaction in resonant railway bridges, Soil Dynam Earthq Eng, 47, 108, 10.1016/j.soildyn.2012.07.014
Aji, 2019, Numerical modelling of the dynamic behavior of an integral bridge via coupled BEM-FEM, 555
Heiland, 2021, Boden-Bauwerk-Interaktion unter Berücksichtigung von tiefen- und frequenzabhängigen, viskosen Dämpferelemente an den Halbraumrändern, Bauingenieur, 96, 309, 10.37544/0005-6650-2021-09-53
Heiland, 2022, Auswirkungen der ebenen Boden-Bauwerk-Interaktion auf die Eigenfrequenz von Eisenbahnrahmenbrücken, Bauingenieur
Reiterer, 2019, Dynamik von Eisenbahnbrücken: Diskrepanz zwischen Messung und Berechnung, Bauingenieur, 94, 9, 10.37544/0005-6650-2019-04-41
Reiterer, 2022, Dynamic analysis of the train crossing of railway bridges under consideration of non-linear effects, Beton- Stahlbetonbau, 117, 90, 10.1002/best.202100086
Zangeneh, 2017, Dynamic stiffness identification of portal frame bridge–soil system using controlled dynamic testing, Procedia Eng, 199, 1062, 10.1016/j.proeng.2017.09.293
Marx, 2010, Erfahrungen zur Modellierung und Bewertung von Eisenbahnbrücken mit Resonanzrisiko, Stahlbau, 79, 188, 10.1002/stab.201001295
Heiland, 2022, Stiffness contributions of ballast in the context of dynamic analysis of short span railway bridges, Construct Build Mater, 360, 10.1016/j.conbuildmat.2022.129536
DIN EN 1991-2:2010-12, Eurocode 1: Einwirkungen auf Tragwerke - Teil 2: Verkehrslasten auf Brücken; Deutsche Fassung EN 1991-2:2003 + AC:2010. Berlin: Beuth Verlag GmbH. https://doi.org/10.31030/1723953.
Wilson, 1988, Stiffness of non-skew monolithic bridge abutments for seismic analysis, Earthq Eng Struct Dynam, 16, 867, 10.1002/eqe.4290160608
Kotsoglou, 2009, Assessment and modeling of embankment participation in the seismic response of integral abutment bridges, Bull Earthq Eng, 7, 343, 10.1007/s10518-009-9103-z
Heiland T, Aji HD, Wuttke F, Stark A. Einfluss der Boden-Bauwerk-Interaktion auf die dynamische Charakteristik von Eisenbahnrahmenbrücken. In: VDI-Berichte Nr 2379, p. 597–610.
Galvín, 2022, Fast simulation of railway bridge dynamics accounting for soil–structure interaction, Bull Earthq Eng, 20, 3195, 10.1007/s10518-021-01191-0
Gazetas, 1985, Vertical response of arbitrarily shaped embedded foundations, J Geotech Eng, 111, 750, 10.1061/(ASCE)0733-9410(1985)111:6(750)
Gazetas, 1987, Horizontal damping of arbitrarily shaped embedded foundations, J Geotech Eng, 113, 458, 10.1061/(ASCE)0733-9410(1987)113:5(458)
Gazetas, 1987, Horizontal stiffness of arbitrarily shaped embedded foundations, J Geotech Eng, 113, 440, 10.1061/(ASCE)0733-9410(1987)113:5(440)
Knopoff, 1952, On Rayleigh wave velocities, Bull Seismol Soc Am, 42, 307, 10.1785/BSSA0420040307
Dobry, 1986, Dynamic response of arbitrarily shaped foundations, J Geotech Engrg, 112, 109, 10.1061/(ASCE)0733-9410(1986)112:2(109)
Wolf, 1989, Soil-structure-interaction analysis in time domain, Nucl Eng Des, 111, 381, 10.1016/0029-5493(89)90249-5
Studer, 2008
Vucetic, 1994, Cyclic threshold shear strains in soils, J Geotech Eng, 120, 2208, 10.1061/(ASCE)0733-9410(1994)120:12(2208)
Vrettos, 2008, Bodendynamik, 451
Aji, 2022, 3D structure-soil-structure interaction in an arbitrary layered half-space, Soil Dynam Earthq Eng, 159, 10.1016/j.soildyn.2022.107352
Wolf, 1994
Hackenberg, 2017
Aji, 2021, 3D hybrid model of foundation-soil-foundation dynamic interaction, ZAMM - Journal of Applied Mathematics and Mechanics/Z Angew Math Mech, 101
2020
Lysmer, 1969, Finite dynamic model for infinite media, J Eng Mech Div, 95, 859, 10.1061/JMCEA3.0001144
Petersen, 2013
Liu, 2006, 3D viscous-spring artificial boundary in time domain, Earthq Eng Eng Vib, 5, 93, 10.1007/s11803-006-0585-2
Zangeneh Kamali, 2021
John P. Wolf, Jethro W. Meek. Insights on 2D-versus 3D-modelling of surface foundations. In: 10th World Conference on Eartquake Engineering.
Kovacs, 1994
Auersch, 1988, Erschütterungsemissionen in Gebäuden.: Eine Parameterstudie und messtechnische Untersuchungen zur Deckenresonanz, Bautechnik, 65, 271
Auersch, 2008, Dynamic stiffness of foundations on inhomogeneous soils for a realistic prediction of vertical building resonance, J Geotech Geoenviron Eng, 134, 328, 10.1061/(ASCE)1090-0241(2008)134:3(328)
Veletsos, 1997, Dynamic response of cantilever retaining walls, J Geotech Geoenviron Eng, 123, 161, 10.1061/(ASCE)1090-0241(1997)123:2(161)
Gazetas, 1983, Analysis of machine foundation vibrations: state of the art, Int J Soil Dynam Earthq Eng, 2, 2
Grunert, 2019