Influence of soil minerals on chromium(VI) reduction by sulfide under anoxic conditions

Springer Science and Business Media LLC - Tập 8 - Trang 1-10 - 2007
Yeqing Lan1, Baolin Deng2, Chulsung Kim3, Edward C Thornton4
1College of Sciences, Nanjing Agricultural University, Nanjing, China
2Dept. of Civil and Environmental Engineering, University of Missouri-Columbia, Columbia, USA
3Dept. Environmental Science, University of Dubuque, Dubuque, USA
4Field Hydrology and Chemistry Group, Pacific Northwest National Laboratory (PNNL), Richland, USA

Tóm tắt

The effects of soil minerals on chromate (CrVIO42-, noted as Cr(VI)) reduction by sulfide were investigated in the pH range of 7.67 to 9.07 under the anoxic condition. The examined minerals included montmorillonite (Swy-2), illite (IMt-2), kaolinite (KGa-2), aluminum oxide (γ-Al2O3), titanium oxide (TiO2, P-25, primarily anatase), and silica (SiO2). Based on their effects on Cr(VI) reduction, these minerals were categorized into three groups: (i) minerals catalyzing Cr(VI) reduction – illite; (ii) minerals with no effect – Al2O3; and (iii) minerals inhibiting Cr(VI) reduction- kaolinite, montmorillonite, SiO2 and TiO2 . The catalysis of illite was attributed primarily to the low concentration of iron solubilized from the mineral, which could accelerate Cr(VI) reduction by shuttling electrons from sulfide to Cr(VI). Additionally, elemental sulfur produced as the primary product of sulfide oxidation could further catalyze Cr(VI) reduction in the heterogeneous system. Previous studies have shown that adsorption of sulfide onto elemental sulfur nanoparticles could greatly increase sulfide reactivity towards Cr(VI) reduction. Consequently, the observed rate constant, kobs, increased with increasing amounts of both iron solubilized from illite and elemental sulfur produced during the reaction. The catalysis of iron, however, was found to be blocked by phenanthroline, a strong complexing agent for ferrous iron. In this case, the overall reaction rate at the initial stage of reaction was pseudo first order with respect to Cr(VI), i.e., the reaction kinetics was similar to that in the homogeneous system, because elemental sulfur exerted no effect at the initial stage prior to accumulation of elemental sulfur nanoparticles. In the suspension of kaolinite, which belonged to group (iii), an inhibitive effect to Cr(VI) reduction was observed and subsequently examined in more details. The inhibition was due to the sorption of elemental sulfur onto kaolinite, which reduced or completely eliminated the catalytic effect of elemental sulfur, depending on kaolinite concentration. This was consistent with the observation that the catalysis of externally added elemental sulfur (50 μM) on Cr(VI) reduction would disappear with a kaolinite concentration of more than 5.0 g/L. In kaolinite suspension, the overall reaction rate law was: -d[Cr(VI)]/dt = kobs[H+]2[Cr(VI)][HS-]0.70

Tài liệu tham khảo

Deng B: Chromium(VI) Reduction by Naturally-Occurring Organic Compounds: Direct and Surface-Catalyzed Reactions. 1995, Ph.D. Dissertation, Johns Hopkins University, Baltimore, MD, USA James BR: The challenge of remediating chromium-contaminated soil. Environmental Science and Technology. 1996, 30 (6): 248A-251A. Blowes DW, Ptacek CJ, Jambor JL: In-Situ Remediation of Chromate Contaminated Groundwater Using Permeable Reactive Walls. Environmental Science & Technology. 1997, 31: 3348-3357. 10.1021/es960844b. Eary LE, Rai D: Chromate Removal from Aqueous Wastes by Reduction with Ferrous Ion. Environmental Science & Technology. 1988, 22: 972-977. 10.1021/es00173a018. Sedlak DL, Chan PG: Reduction of Hexavalent Chromium (VI) by Ferrous Iron. Geochim Cosmochim Acta. 1997, 61: 2185-2192. 10.1016/S0016-7037(97)00077-X. Pettine M, D'Ottone L, Campanella L, Millero FJ, Passino R: The Reduction of Chromium (VI) by Iron (II) in Aqueous Solution. Geochimica et Cosmochimica Acta. 1998, 62: 1509-1519. 10.1016/S0016-7037(98)00086-6. Buerge IJ, Hug SJ: Kinetics and pH Dependence of Chromium (VI) Reduction by Iron (II). Environmental Science & Technology. 1997, 31: 1426-1432. 10.1021/es960672i. Buerge IJ, Hug SJ: Influence of Organic Ligands on Chromium (VI) Reduction by Iron (II). Environmental Science & Technology. 1998, 32: 2092-2099. 10.1021/es970932b. Seaman JC, Bertsch PM, Schwallie L: In Situ Cr (VI) Reduction within Coarse-Textured, Oxide-Coated Soil and Aquifer Systems Using Fe (II) Solution. Environmental Science & Technology. 1999, 33: 938-944. 10.1021/es980546+. Fruchter J: In Situ Treatment of Chromium-contaminated Groundwater. Environmental Science & Technology. 2002, 36: 464A-472A. Bond D, Fendorf S: Kinetics and Structural Constraints of Chromate Reduction by Green Rusts. Environmental Science & Technology. 2003, 37: 2750-2757. 10.1021/es026341p. James B, Bartlett RJ: Behavior of Chromium in Soils. VI. Interactions Between Oxidation-Reduction and Organic Complexation. J Environ Qual. 1983, 12: 177-181. Wittbrodt PR, Palmer CD: Reduction of Cr (VI) in the Presence of Excess of Soil Fulvic Acid. Environmental Science & Technology. 1995, 29: 255-263. 10.1021/es00001a033. Goodgame D-L, Hayman PB: Formation of Water-soluble Chromium(V) by the Interaction of Humic Acid and the Carcinogen Chromium(VI). Inorganica Chimica Acta. 1984, 91: 113-115. 10.1016/S0020-1693(00)81789-2. Thornton EC, Amonette JE: Gas Treatment of Cr(VI)-contaminated Sediment Samples from the North 60's Pits of the Chemical Waste Landfill; PNNL-11634. 1997, Pacific Northwest National Laboratory: Richland, WA Thornton EC, Amonette JE: Hydrogen Sulfide Gas Treatment of Cr (VI)-Contaminated Sediment Samples from a Plating-Waste Disposal Site. Implication for in-Situ Remediation. Environmental Science & Technology. 1999, 33: 4096-4101. 10.1021/es9812507. ASME: Technical Peer Review Report in Assessment of Technologies Supported by the Office of Science and Technology Department of Energy. 1999, The American Society of Mechanical Engineers, 257-264. Cantrell KJ, Yabusaki SB, Engelhard MH, Mitroshkov AV, Thornton EC: Oxidation of H2S by Iron Oxides in Unsaturated Conditions. Environ Sci Technology. 2003, 37: 2192-2199. 10.1021/es020994o. Pettine M, Millero FJ, Passino R: Reduction of Chromium (VI) with Hydrogen Sulfide in NaCl Media. Marine Chemistry. 1994, 46: 335-344. 10.1016/0304-4203(94)90030-2. Kim C, Zhou Q, Deng B, Thornton EC, Xu H: Chromium (VI) Reduction by Hydrogen Sulfide in Aqueous Media: Stoichiometry and Kinetics. Environmental Science & Technology. 2001, 35: 2219-2225. 10.1021/es0017007. Lan Y, Deng B, Kim C, Thornton EC, Xu H: Catalysis of Elemental Sulfur Nanoparticles on Chromium (VI) Reduction by Sulfide under Anaerobic Conditions. Environmental Science & Technology. 2005, 39: 2087-2094. 10.1021/es048829r. Hua B, Deng B: Influences of Water Vapor on Cr(VI) Reduction by Gaseous Hydrogen Sulfide. Environmental Science & Technology. 2003, 37: 4771-4777. 10.1021/es0342446. Eary LE, Rai D: Kinetics of Chromate Reduction by Ferrous Ions Derived From Hematite and Biotite at 25°C. Am J Sci. 1989, 289: 180-213. Patterson RR, Fendorf S: Reduction of Hexavalent Chromium by Amorphous Iron Sulfide. Environmental Science & Technology. 1997, 31: 2039-2044. 10.1021/es960836v. Buerge IJ, Hug SJ: Influence of Mineral Surfaces on Chromium (VI) Reduction by Iron (II). Environmental Science & Technology. 1999, 33: 4285-4291. 10.1021/es981297s. Deng B, Stone AT: Surface-Catalyzed Chromium (VI) Reduction: The TiO2-Mandelic Acid System. Environmental Science & Technology. 1996, 30: 463-472. 10.1021/es950156c. Deng B, Stone AT: Surface-Catalyzed Chromium(VI) Reduction: Reactivity Comparisons among Different Organic Reductants and Different Catalytic Surfaces. Environmental Science & Technology. 1996, 30: 2484-2494. 10.1021/es950780p. Stumn W, Morgan JJ: Aquatic Chemistry. 1996, New York: Wiley-Interscience Zhachara JM, Davis JA, Liu C, McKinley JP, Qafoku N, Wellman DM, Yabusaki SB: Uranium Geochemistry in Vadose Zone and Aquifer Sediments from the 300 Area Uranium Plum. 2005, Pacific Northwest National Laboratory report PNNL-15121 Amonette JE, Workman AJ, Kennedy DW, Fruchter JS, Gorby YA: Dechlorination of Carbon Tetrachloride by Fe(II) Associated with Goethithe. Environmental Science & Technology. 2000, 34: 4606-4613. 10.1021/es9913582. Lovley DR, Philips E-P: Availability of Trivalent Iron for Microbial Reduction in Bottom Sediments of the Freshwater Tidal Potomac River. Appl And Environ Microbiol. 1986, 52: 751-757. APHA; AWWA; WPCF: Standard Methods for the Examination of Water and Wastewater. 1998, American Public Health Association: Washington, D. C, 20 Allen HE, Fu G, Deng B: Analysis of Acid Volatile Sulfide (AVS) and Simultaneously Extracted Metals (SEM) for the Estimation of Potential Toxicity in Aquatic Sediments. Environ Toxicol Chem. 1993, 12: 1441-1453. Anderson LD, Kent DB, Davis JA: Batch Experiments Characterizing the Reduction of Cr(VI) Using Suboxic Material from a Mildly Reducing Sand and Gravel Aquifer. Environmental Science & Technology. 1994, 28: 178-185. 10.1021/es00050a025. Morse JW, Millero FJ, Cornwell JC, Rickard D: The Chemistry of the Hydrogen Sulfide and Iron Sulfide Systems in Natural Waters. Earth Sci Rev. 1987, 24: 1-10.1016/0012-8252(87)90046-8. Lan Y, Yang J, Deng B: Catalysis of Dissolved and Adsorbed Iron in Soil Suspension for Chromium(VI) Reduction by Sulfide. Pedosphere. 2006, 16 (5): 572-578. 10.1016/S1002-0160(06)60090-8.