Influence of rock mass strength on the erosion rate of alpine cliffs

Earth Surface Processes and Landforms - Tập 34 Số 10 - Trang 1339-1352 - 2009
Jeffrey R. Moore1,2, J. W. Sanders3, W. E. Dietrich3, Steven D. Glaser4
1Department of Civil and Environmental Engineering, University of California, Berkeley, California, USA
2Geological Institute, Swiss Federal Institute of Technology, Zürich, Switzerland
3Department of Earth and Planetary Science, University of California Berkeley, California, USA
4Department of Civil & Environmental Engineering, University of California, Berkeley, California, USA

Tóm tắt

AbstractCollapse of cliff faces by rockfall is a primary mode of bedrock erosion in alpine environments and exerts a first‐order control on the morphologic development of these landscapes. In this work we investigate the influence of rock mass strength on the retreat rate of alpine cliffs. To quantify rockwall competence we employed the Slope Mass Rating (SMR) geomechanical strength index, a metric that combines numerous factors contributing to the strength of a rock mass. The magnitude of cliff retreat was calculated by estimating the volume of talus at the toe of each rockwall and projecting that material back on to the cliff face, while accounting for the loss of production area as talus buries the base of the wall. Selecting sites within basins swept clean by advancing Last Glacial Maximum (LGM) glaciers allowed us to estimate the time period over which talus accumulation occurred (i.e. the production time). Dividing the magnitude of normal cliff retreat by the production time, we calculated recession rates for each site. Our study area included a portion of the Sierra Nevada between Yosemite National Park and Lake Tahoe. Rockwall recession rates determined for 40 alpine cliffs in this region range from 0·02 to 1·22 mm/year, with an average value of 0·28 mm/year. We found good correlation between rockwall recession rate and SMR which is best characterized by an exponential decrease in erosion rate with increasing rock mass strength. Analysis of the individual components of the SMR reveals that joint orientation (with respect to the cliff face) is the most important parameter affecting the rockwall erosion rate. The complete SMR score, however, best synthesizes the lithologic variables that contribute to the strength and erodibility of these rock slopes. Our data reveal no strong independent correlations between rockwall retreat rate and topographic attributes such as elevation, aspect, or slope angle. Copyright © 2009 John Wiley & Sons, Ltd.

Từ khóa


Tài liệu tham khảo

10.2307/1552008

10.1002/(SICI)1096-9837(199705)22:5<423::AID-ESP706>3.0.CO;2-6

10.1016/0169-555X(95)00050-X

Augustinus PC., 1995, Rock mass strength and the stability of some glacial valley slopes, Zeitschrift für Geomorphologie, 39, 55, 10.1127/zfg/39/1995/55

10.1016/S0277-3791(02)00005-7

Barsch D., 1977, An estimation of talus production around and transport by active rock glaciers in the Swiss Alps, Zeitschrift für Geomorphologie, Suppl.‐Bd, 28, 148

Bateman PC, 1966, Geology of the Sierra Nevada, California Division of Mines and Geology Bulletin, 190, 107

10.1111/j.1468-0459.2007.00309.x

Bieniawski ZT., 1973, Engineering classification of jointed rock masses, Transactions of the South African Institution of Civil Engineers, 15, 335

Bieniawski ZT., 1989, Engineering Rock Mass Classifications

Bjerrum L, 1968, Stability of Rock Slopes in Norway, 1

10.1007/978-3-662-05223-5

10.1139/e03-012

Carson MA, 1972, Hillslope Form and Process

10.1016/S1040-6182(96)00024-9

10.5194/nhess-7-1-2007

10.1002/esp.1199

10.1016/0165-232X(85)90013-8

10.1002/ppp.378

Deere DU., 1963, Technical description of rock cores for engineering purposes, Rock Mechanics & Engineering Geology, 1, 1

10.1029/135GM09

10.1002/ppp.3430020406

10.1139/t93-054

10.1017/S0016756800167573

10.1080/00167223.1985.10649216

Gardner JS., 1969, Rockfall: a geomorphic process in high mountain terrain, Albertan Geographer, 6, 15

Gardner JS., 1983, Rockfall frequency and distribution in the Highwood Pass area, Canadian Rocky Mountains, Zeitschrift für Geomorphologie, 27, 311, 10.1127/zfg/27/1983/311

Gerber E., 1980, Geomorphological problems in the Alps, Rock Mechanics. Supplementum, 9, 93

10.1007/BF01238051

Goodman RE., 1989, Introduction to Rock Mechanics

Goodman RE, 1985, Block Theory and its Application to Rock Engineering

10.2307/1550243

Gray JT., 1972, Mountain Geomorphology, 75

10.1029/2006JF000547

10.1130/G23596A.1

10.5194/nhess-3-491-2003

10.1016/S0098-3004(02)00025-0

10.1130/G21528.1

10.1029/2006JF000616

10.1038/333347a0

1984 USGS Reston VA EL Harp K Tanaka J Sarmiento DK. Keefer Landslides from the May 25–27 1980 Mammoth Lakes California earthquake sequence USGS Misc. Inv. Map I‐1612

10.1191/095968399671220239

10.1080/00369229918737057

Hoffman T, 2002, Modelling sediment thickness and rockwall retreat in an Alpine valley using 2D‐seismic refraction (Reintal, Bavarian Alps), Zeitschrift für Geomorphologie, Suppl.‐Bd, 127, 152

10.1016/0013-7952(89)90035-5

10.2113/12.1.39

10.1023/B:NHAZ.0000007178.44617.c6

10.1002/esp.1076

10.1016/0148-9062(78)90002-5

10.5194/nhess-5-621-2005

10.1006/qres.2002.2335

10.1111/j.1468-0459.2007.00305.x

10.2475/ajs.289.9.1041

10.1002/esp.3290010309

10.2307/521289

Mandl G., 2005, Rock Joints

10.1023/B:NHAZ.0000007170.21649.e1

10.1002/esp.208

10.1016/S0169-555X(98)00116-0

10.3133/pp160

Matthes FE., 1938, Avalanche sculpture in the Sierra Nevada of California, International Association of Scientific Hydrology Bulletin, 23, 631

10.1130/0091-7613(1993)021<0343:QOSPAD>2.3.CO;2

10.1029/96JB02531

10.1029/2003JF000097

10.1029/2005JF000433

10.1016/S0013-7952(01)00024-2

MooreJR.2007.Rock Mass Strength Controls on the Erosion Rate of Alpine Cliffs in the Sierra Nevada California USA. MS Thesis University of California Berkeley CA.

10.2307/1550982

10.1126/science.274.5288.749

10.2307/520126

Rapp A., 1960, Talus slopes and mountain walls at Tempelfjorden, Spitsbergen, Norsk Polarinstitutt Skrifter, 199, 1

10.1029/1998WR900090

Romana M., 1985, New adjustment ratings for application of Bieniawski classification to slopes, 49

Romana M., 1995, The geomechanical classification SMR for slope correction, 1085

10.1016/j.jappgeo.2006.12.003

10.1002/esp.254

10.1002/esp.3290080508

10.1029/JB091iB03p03677

10.1127/zfg/24/1984/31

10.1002/esp.3290070506

Selby MJ., 1993, Hillslope Materials and Processes

10.1680/geot.1962.12.4.251

10.1680/geot.1962.12.3.199

10.2475/ajs.302.3.169

10.1080/00049186508702442

Walder J, 1985, A theoretical model of the fracture of rock during freezing. Geological Society of America, Bulletin, 96, 336

10.1130/0091-7613(1997)025<0631:IORSPO>2.3.CO;2

Whalley WB., 1984, Slope Instability, 217

10.1016/0169-555X(95)00112-I

Wieczorek GF, 1999, Rock‐fall Potential in the Yosemite Valley, California, 10.3133/ofr99578