Influence of respiratory substrate in carbon steel corrosion by a Sulphate Reducing Prokaryote model organism
Tài liệu tham khảo
Beech, 2004, Biocorrosion: towards understanding interactions between biofilms and metals, Curr. Opin. Biotechnol., 15, 181, 10.1016/j.copbio.2004.05.001
Coetser, 2005, Biofouling and biocorrosion in industrial water systems, Crit. Rev. Microbiol., 31, 213, 10.1080/10408410500304074
Hiibel, 2008, Microbial community analysis of two field-scale sulfate-reducing bioreactors treating mine drainage, Environ. Microbiol., 10, 2087, 10.1111/j.1462-2920.2008.01630.x
Dickschat, 2010, Quorum sensing and bacterial biofilms, Nat. Prod. Rep., 27, 343, 10.1039/b804469b
Sauer, 2003, The genomics and proteomics of biofilm formation, Genome Biol., 4, 219, 10.1186/gb-2003-4-6-219
Flemming, 2007, The EPS matrix: the “house of biofilm cells”, J. Bacteriol., 189, 7945, 10.1128/JB.00858-07
Beech, 1999, Study of the interaction of sulphate-reducing bacteria exopolymers with iron using X-ray photoelectron spectroscopy and time-of-flight secondary ionisation mass spectrometry, J. Microbiol. Methods, 36, 3, 10.1016/S0167-7012(99)00005-6
Cordas, 2008, Electroactive biofilms of sulphate reducing bacteria, Electrochim. Acta, 54, 29, 10.1016/j.electacta.2008.02.041
Beech, 2005, Microbe-surface interactions in biofouling and biocorrosion processes, Int. Microbiol., 8, 157
Hubert, 2007, Oil field souring control by nitrate-reducing Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron donors, Appl. Environ. Microbiol., 73, 2644, 10.1128/AEM.02332-06
Muyzer, 2008, The ecology and biotechnology of sulphate-reducing bacteria. Nature reviews, Microbiology, 6, 14
Videla, 2005, Microbiologically influenced corrosion: looking to the future, Int. Microbiol., 8, 169
Cordas, 2008, Direct electrochemical study of the multiple redox centers of hydrogenase from Desulfovibrio gigas, Bioelectrochemistry, 74, 83, 10.1016/j.bioelechem.2008.04.019
Da Silva, 2004, Electron transfer between hydrogenase and 316L stainless steel: identification of a hydrogenase-catalyzed cathodic reaction in anaerobic MIC, J. Electroanal. Chem., 561, 9, 10.1016/j.jelechem.2003.07.005
Brutinel, 2012, Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella, Appl. Microbiol. Biotechnol., 93, 41, 10.1007/s00253-011-3653-0
Liu, 2012, Identification and characterization of MtoA: a decaheme c-type cytochrome of the neutrophilic Fe(II)-oxidizing bacterium Sideroxydans lithotrophicus ES-1, Front. Microbiol., 3, 37, 10.3389/fmicb.2012.00037
Zinkevich, 2000, Screening of sulfate-reducing bacteria in colonoscopy samples from healthy and colitic human gut mucosa, FEMS Microbiol. Ecol., 34, 147, 10.1111/j.1574-6941.2000.tb00764.x
Cline, 1969, Spectrophotometric determination of hydrogen sulfide in natural waters, Limnol. Oceanogr., 14, 454, 10.4319/lo.1969.14.3.0454
Aguilera, 2008, Extraction of extracellular polymeric substances from extreme acidic microbial biofilms, Appl. Microbiol. Biotechnol., 78, 1079, 10.1007/s00253-008-1390-9
Höök, 1998, Energy dissipation kinetics for protein and antibody–antigen adsorption under shear oscillation on a quartz crystal microbalance, Langmuir, 14, 5, 10.1021/la970815u
Kjelleberg, 2002, Is there a role for quorum sensing signals in bacterial biofilms?, Curr. Opin. Microbiol, 5, 254, 10.1016/S1369-5274(02)00325-9
Majumdar, 1999, Microbial exopolysaccharides: effect on corrosion and partial chemical characterization, J. Indian Inst. Sci., 79, 11
Bodtker, 2008, The effect of long-term nitrate treatment on SRB activity, corrosion rate and bacterial community composition in offshore water injection systems, J. Ind. Microbiol. Biotechnol., 35, 1625, 10.1007/s10295-008-0406-x
Moura, 2007, Dissimilatory nitrate and nitrite ammonification by sulphate-reducing eubacteria
Hamilton, 2003, Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis, Biofouling, 19, 65, 10.1080/0892701021000041078
Hansen, 1994, Metabolism of sulfate-reducing prokaryotes, Antonie Van Leeuwenhoek, 66, 165, 10.1007/BF00871638
Keller, 2011, Genetics and molecular biology of the electron flow for sulfate respiration in desulfovibrio, Front. Microbiol., 2, 135, 10.3389/fmicb.2011.00135
Zhang, 2007, Comparative transcriptome analysis of Desulfovibrio vulgaris grown in planktonic culture and mature biofilm on a steel surface, Appl. Microbiol. Biotechnol., 76, 447, 10.1007/s00253-007-1014-9
Ma, 2000, The influence of hydrogen sulfide on corrosion of iron under different conditions, Corros. Sci., 42, 14, 10.1016/S0010-938X(00)00003-2
Fonseca, 1998, The influence of the media on the corrosion of mild steel by Desulfovibrio desulfuricans bacteria: an electrochemical study, Electrochim. Acta, 43, 213, 10.1016/S0013-4686(97)00227-2
Hilbert, 2005, When can electrochemical techniques give reliable corrosion rates on carbon steel in sulfide media?
Da Silva, 2002, The role of hydrogenases in the anaerobic microbiologically influenced corrosion of steels, Bioelectrochemistry, 56, 77, 10.1016/S1567-5394(02)00034-8
Kuang, 2007, Effects of sulfate-reducing bacteria on the corrosion behavior of carbon steel, Electrochim. Acta, 52, 6084, 10.1016/j.electacta.2007.03.041