Influence of red mud on performance enhancement of fly ash-based geopolymer concrete
Tóm tắt
Từ khóa
Tài liệu tham khảo
Koshy N, Singh DN (2016) FA zeolites for water treatment applications. J Environ Chem Eng 4:1460–1472
Toniolo N, Boccaccini AR (2017) FA-based geopolymers containing added silicate waste. A review Ceram Int 43:14545–14551
Ascensão G, Seabra MP, Aguiar JB, Labrincha JA (2017) RM-based geopolymers with tailored alkali di_usion properties and pH bu_ering ability. J Clean Prod 148:23–30
Koshy N, Jha B, Kadali S, Singh DN (2015) Synthesis and Characterization of Ca and Zeolites (Non-Pozzolanic Materials) obtained from FA–Ca(OH)2 Interaction. Mater Perform Charact 4:87–102
Davidovits, J. ‘‘Soft mineralogy and geopolymers’’, Proceedings of the Geopolymer 88 International Conference, the Université de Technologie, Compiègne, France (1998)
Davidovits, J. ‘‘High-alkali cements for 21st century concretes’’, In Concrete Technology, Past, Present and Future: Proceedings of V. Mohan Malhotra Symposium, P. Kumar Metha, Ed., pp. 383–397, ACI SP-144 (1994)
Oh, Jae Eun, Monteiro, Paulo J.M., Jun, Ssang Sun, Choi, Sejin and Clark, Simon M. ‘‘The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and FA-based geopolymers’’, Cem. Concr. Res., 40(2), pp. 189–196 (2010)
Shi, Caijun, Roy, Della and Krivenko, Pavel, Alkali-Activated Cements and Concrete, Taylor & Francis Ltd. NewYork, NY10016, U.S.A (2006)
Alonso, S. and Palomo, A.X ‘‘Calorimetric study of alkaline activation of calcium hydroxide-metakaolin solid mixtures’’, Cem. Concr. Res, 31(1), pp. 25–30 (2010)
Pan Z (2003) Li, Dongxu, Yu, Jian and Yang, Nanry ‘“Properties and microstructure of the hardened alkali-activated RM-slag cementitious material.”’ Cem Concr Res 33(9):1437–1441
Purdon, A.O.X. ‘‘The action of alkali on blast furnace slag’’, J. Soc. Chem. Ind., 59(53), pp. 191–202 Wiley online library (1999).
Duxson P, Provis JL, Lukey GC, Mallicoat SW (2005) ‘Understanding the relationship between geopolymer composition, microstructure and mechanical properties.’ Colloids Surf 269(1):47–58
Xu, Hua and van Deventer, Jannie S.J. (2003). ‘‘Effect of source materials on geopolymerization’’, Ind. Eng. Chem. Res., 42(8), pp. 1698–1706
Duxson P, Mallicoa SW, Lukey GC, Kriven WM, van Deventer JSJ (2007) ‘The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers.’ Colloids Surf 292(1):8–20
Khale, Divya and Chudhary, Rubina. (2007). ‘‘Mechanism of geopolymerization and factures influencing it development: review’’, J. Mater. Sci., 42 729–746
Hou Y, Wang Dongmin, Zhou Wenjuan, Lu Hongbo, Wang Lin (2006) ‘Effect of activator and curing mode on FA-based geopolymers.’ J Wuhan Univ Natur Sci Ed. 24(5):711–715
Cheng TW, Chiu JP (2003) ‘Fire-resistant geopolymer produced by granulated blast furnace slag.’ Miner Eng 16(3):205–210
Smita singh, Rahul das biswas, Aswath m.u, 2016. Experimental study on redmud based GC with FA & ggbs in ambient temperature Curing, International Journal of Advances in Mechanical and Civil Engineering, Special Issue
Shi Y, Zhang Z, Sang Z, Zhao Q (2020) Microstructure and Composition of Red Mud-Fly Ash-Based Geopolymers Incorporating Carbide Slag. Front Mater 7:563233. https://doi.org/10.3389/fmats.2020.563233
He J, Jie Y, Zhang J, Yu Y, Zhang G (2013) Synthesis and characterization of RM and rice husk ash-based geopolymer composites. Cement Concr Compos 37:108–118
Kumar A, Kumar S (2013) Development of paving blocks from synergistic use of RM and FA using geopolymerization. Constr Build Mater 713(38):865–871
Nie Q, Hu W, Ai T, Huang B, Shu X, He Q (2016) Strength properties of geopolymers derived from original and desulfurized RM cured at ambient temperature. Constr Build Mater 125:905–911
Wang Z, Shu X, Rutherford T, Huang B, Clarke D (2015) Effects of asphalt emulsion on properties of fresh cement emulsified asphalt mortar. Constr Build Mater 75:25–30
Wang, Z., Wu, J., Zhao, P., Dai, N., Zhai, Z., Ai, T. (2017). Improving cracking resistance of cement mortar by thermo-sensitive poly N-isopropyl acrylamide (PNIPAM) gels. Journal of Cleaner Production
Ye N, Yang J, Ke X, Zhu J, Li Y, Xiang C, Wang H, Li L, Xiao B (2014) Synthesis and characterization of geopolymer from bayer RM with thermal pretreatment. J Am Ceram Soc 97(5):1652–1660
Zhang M, El-Korchi T, Zhang G, Liang J, Tao M (2014) Synthesis factors affecting mechanical properties, microstructure, and chemical composition of RM-FA based geopolymers. Fuel 134:315–325
Pridobivanje, U.G.Z., RDE, G.M.N.O., Blata, E., Utilization of geopolymerization for obtaining construction materials based on RM. Materiali in tehnologije 47(1) 2013, 99–104
Petermann, J.C., Saeed, A., Hammons, M.I., Alkali-Activated Geopolymers: A Literature Review, 2010. DTIC Document
ASTM C 618, Standard Specification for Coal FA and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM International, West Conshohocken, PA, 2019
ASTM C150/C150M-19a, Standard Specification for Portland Cement, ASTM International, West Conshohocken, PA, 2019, www.astm.org
ASTM C143 / C143M -20 Standard Test Method for Slump of Hydraulic-Cement Concrete
BS 12390–3 (2009), Testing hardened concrete, compressive strength of test specimens, BSI, London
He J, Zhang J, Yu Y, Zhang G (2012) The strength and microstructure of two geopolymers derived from metakaolin and RM-FA admixture: a comparative study. Constr Build Mater 30:80–91
Zhang M, Zhao M, Zhang G, Mann D, Lumsden K, Tao M (2016) Durability of RM-FA based geopolymer and leaching behavior of heavy metals in sulfuric acid solutions and deionized water. Constr Build Mater 124:373–382
Weng L, Sagoe-Crentsil K (2007) ‘Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: part I — low Si/Al ratio systems.’ J Mater Sci 42(9):2997–3006
Sagoe-Crentsil K, Weng L (2007) ‘Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: part II. high Si/Al ratio systems.’ J Mater Sci 42(9):3007–3014
Rattanasak U, Chindaprasirt P (2009) Influence of NaOH solution on the synthesis of FA geopolymer. Miner Eng 22(12):1073–1078
Ahmari S, Ren X, Toufigh V, Zhang L (2012) Production of geopolymeric binder from blended waste concrete powder and FA. Constr Build Mater 35:718–729
ASTM C1202–19: Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration (ASTM West Conshohocken, 2019)
ASTM G109–07(2013): Standard Test Method for Determining Effects of Chemical Admixtures on Corrosion of Embedded Steel Reinforcement in Concrete Exposed to Chloride Environments (ASTM West Conshohocken, 2013)
Ribeiro DV, Labrincha JA, Morelli MR (2012) Effect of the addition of red mud on the corrosion parameters of reinforced concrete. Cem Concr Res 42(1):124–133. https://doi.org/10.1016/j.cemconres.2011.09.002
Hou D, Wu D, Wang X, Gao S, Yu R, Li M, Wang Y (2020) Sustainable use of red mud in ultra-high performance concrete (UHPC): design and performance evaluation. Cement Concr Compos. https://doi.org/10.1016/j.cemconcomp.2020.103862
Díaz B, Freire L, Nóvoa XR, Pérez MC (2015) Chloride and CO2 transport in cement paste containing red mud. Cement Concr Compos 62:178–186
Bellum, R. R., Muniraj, K., Rama, S., & Madduru, C. (2019). Empirical relationships on mechanical properties of class-F fly ash and GGBS based geopolymer concrete. Ann Chim–Sci Matér, 43(3), 189–197. DOI: https://doi.org/10.18280/ascm430.
Bellum Ramamohana Reddy, Muniraj Karthikeyan, Madduru Sri Rama Chand (2020) Influence of Activator Solution on Microstructural and Mechanical Properties of Geopolymer Concrete. Materialia. 10:100659. https://doi.org/10.1016/j.mtla.2020.100659