Influence of pre-existing martensite on the wear resistance of metastable austenitic stainless steels

Wear - Tập 364-365 - Trang 40-47 - 2016
Gemma Fargas1, J.J. Roa1, A. Mateo1
1CIEFMA, Departament de Ciència dels Materials i Enginyeria Metal·lúrgica, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

F. Placidi, F. Fraschetti, Potential application of stainless steel for vehicle crashworthiness structures, Technical report, Cenro Sviluppo Materiali, Italy.

Vogt, 1993, Effective stresses and microstructure in cyclically deformed 316L austenitic stainless steel: effect of temperature and nitrogen content, Fatigue Fract. Eng. Mater. Struct., 16, 555, 10.1111/j.1460-2695.1993.tb00766.x

R. Andersson, C. Magnusson, E. Schedin, in: Proceedings of the Conference of the Second Global Symposium on Innovations in Materials Processing and Manufacturing, Sheet Materials, TMS, New Orleans, February 11–15, 2001. ISBN0-87339-490-9.

Gomes de Abreu, 2007, Deformation induced martensite in an AISI 301LN stainless steel: characterization and influence on pitting corrosion resistance, Mater. Res., 10, 359, 10.1590/S1516-14392007000400007

Mangonon, 1970, The martensite phases in 304 stainless steel, Metall. Trans., 1, 1577, 10.1007/BF02642003

Seetharaman, 1981, Influence of the martensitic transformation on the deformation behavior of an AISI 316 stainless steel at low temperatures, J. Mater. Sci., 16, 523, 10.1007/BF00738646

Nolze, 2004, Characterisation of the fcc/bcc orientation relationship by EBSD using pole figures and variants, Z. Metallkunde, 95, 744, 10.3139/146.018017

Gutierrez-Urrutia, 2011, Dislocation and twin substructure evolution during strain hardening of an Fe-22wt% Mn-0.6wt% C TWIP steel observed by electron channeling contrast imaging, Acta Mater., 59, 6449, 10.1016/j.actamat.2011.07.009

Prakash, 2008, Twinning models in self-constant texture simulations of TWIP steels, Steel Res. Int., 79, 645, 10.1002/srin.200806178

Niendorf, 2009, The role of monotonic pre-deformation on the fatigue performance of a high-manganese austenitic TWIP steel, Mater. Sci. Eng. A, 499, 518, 10.1016/j.msea.2008.09.033

Hamada, 2009, Fatigue behavior of high-Mn TWIP steels, Mater. Sci. Eng. A, 517, 68, 10.1016/j.msea.2009.03.039

Frommeyer, 2003, Supra-ductile and high strength manganese-TRIp/TWIP steels for high energy absorption purposes, ISIJ Int., 43, 438, 10.2355/isijinternational.43.438

Wu, 2014, Low cycle fatigue behavior and deformation mechanism of TWIP steel, J. Iron Steel Res., 21, 352, 10.1016/S1006-706X(14)60054-6

Byun, 2003, On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels, Acta Mater., 51, 3063, 10.1016/S1359-6454(03)00117-4

Talonen, 2005, Effect of strain rate on the strain induced γ→α′-martensite transformation and mechanical properties of austenitic stainless steels, Metall. Mater. Trans. A, 36, 421, 10.1007/s11661-005-0313-y

Beese, 2012, Anisotropic plasticity model coupled with Lode angle dependent strain-induced transformation kinetics law, J. Mech. Phys. Solids, 60, 1922, 10.1016/j.jmps.2012.06.009

Mangonon, 1970, The martensite phases in 304 stainless steel, Metall. Trans., 1, 1577, 10.1007/BF02642003

Tamura, 1982, Deformation induced martensitic transformation and transformation induced plasticity in steels, Metal Sci., 16, 245, 10.1179/030634582790427316

Spencer, 2004, Strengthening via the formation of strain-induced martensite in stainless steels, Mater. Sci. Eng. A, 387–389, 873, 10.1016/j.msea.2003.11.084

Fargas, 2015, Correlation between microstructure and mechanical properties before and after reversion of metastable austenitic stainless steels, Metall. Mater. Trans. A, 46, 5697, 10.1007/s11661-015-3178-8

Stolarz, 2001, Fatigue short crack behavior in metastable austenitic stainless steels with different grain sizes, Mater. Sci. Eng. A, 319–321, 521, 10.1016/S0921-5093(01)01072-3

Topic, 2007, The fatigue behaviour of metastable (AISI-304) austenitic stainless steel wires, Int. J. Fatigue, 29, 656, 10.1016/j.ijfatigue.2006.07.007

Fargas, 2009, High cycle fatigue of metastable austenitic stainless steels, IOP Conf. Ser.: Mater. Sci. Eng., 5, 012008, 10.1088/1757-899X/5/1/012008

Mohan Lal, 2001, Cryogenic treatment to augment wear resistance of tool and die steels, Cryogenics, 4, 149, 10.1016/S0011-2275(01)00065-0

Das, 2010, Influence of sub-zero treatments on fracture toughness of AISI D2 steel, Mater. Sci. Eng. A, 528, 589, 10.1016/j.msea.2010.09.057

Hsu, 1980, Friction, wear and microstructure of unlubricated austenitic stainless steels, Wear, 60, 13, 10.1016/0043-1648(80)90247-1

Yang, 1985, Sliding wear of 304 and 310 stainless steels, Wear, 105, 73, 10.1016/0043-1648(85)90007-9

Farias, 2007, The influence of applied load, sliding velocity and martensitic transformation on the unlubricated sliding wear of austenitic stainless steels, Wear, 263, 773, 10.1016/j.wear.2006.12.017

Kim, 2007, Effect of phase transformation on wear of high-nitrogen austenitic 18Cr–18Mn–2Mo–0.9N steel, Mater. Sci. Eng. A, 449–451, 1075, 10.1016/j.msea.2006.02.294

Hua, 2008, Friction and wear behavior of SUS 304 austenitic stainless steel against Al2O3 ceramic ball under relative high load, Wear, 265, 799, 10.1016/j.wear.2008.01.017

ASTM G99-04, 2004

ASTM E975-03, 2003

Shakhova, 2012, Effect of large strain cold rolling and subsequent annealing on microstructure and mechanical properties of an austenitic stainless steel, Mater. Sci. Eng. A, 545, 176, 10.1016/j.msea.2012.02.101

Nakada, 2010, Deformation-induced martensitic transformation behavior in cold-rolled and cold-drawn type 316 stainless steels, Acta Mater., 58, 895, 10.1016/j.actamat.2009.10.004

Roa, 2015, Deformation of polycrystalline TRIP stainless steel micropillars, Mater. Sci. Eng. A, 647, 51, 10.1016/j.msea.2015.08.082

Zum Gahr, 1988, Modelling of two-body abrasive wear, Wear, 124, 87, 10.1016/0043-1648(88)90236-0

Muñoz, 2011, Microstructural changes in ground 3Y-TZP and their effect on mechanical properties, Acta Mater., 59, 6670, 10.1016/j.actamat.2011.07.024

Zhilyaev, 2003, Microstructural characterization of ultrafine-grained nickel, Phys. Status Solidi A, 198, 263, 10.1002/pssa.200306608

Ungar, 2005, Correlation between subgrains and coherently scattering domains, Powder Diffr., 20, 366, 10.1154/1.2135313

Liddicoat, 2010, Nanostructural hierarchy increases the strength of aluminium alloys, Nat. Commun., 1, 63, 10.1038/ncomms1062

Landolt, 2004, Third body effects on material fluxes in tribocorrosion systems involving a sliding contact, Wear, 256, 517, 10.1016/S0043-1648(03)00561-1

Jemmely, 2000, Electrochemical modeling of passivation phenomena in tribocorrosion, Wear, 237, 63, 10.1016/S0043-1648(99)00314-2

Diomidis, 2009, A methodology for assessment of the tribocorrosion of passivating metallic materials, Lubr. Sci., 21, 53, 10.1002/ls.73

Mischler, 1999, The role of passive oxide films on the degradation of steel in tribocorrosion systems, Wear, 225–229, 1078, 10.1016/S0043-1648(99)00056-3