Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Ảnh hưởng của các chất điều hòa tăng trưởng thực vật, nguồn cacbon và sắt đến quá trình tạo phôi soma thứ cấp và tái sinh cây trồng của gốc cây anh đào chuyển gen `Colt' (Prunus avium × P. pseudocerasus)
Tóm tắt
Tần suất tạo phôi soma thứ cấp lâu dài và sự phát triển mô chồi từ các khối phôi của gốc cây anh đào `Colt' (Prunus avium × P. pseudocerasus), được phân tách từ rễ cây chuyển gen chứa T-DNA của Agrobacterium rhizogenes, đã mở ra hướng đi mới cho việc cải thiện gen thông qua các kỹ thuật công nghệ sinh học. Cây hoàn chỉnh đã được sản xuất bằng cách kích thích sự phát triển mô chồi từ phôi soma. Sự kết hợp giữa 4 mg l−1 kinetin và 2% maltose dưới ánh sáng đã kích thích sự phát triển mô chồi, và sau đó, các cây hoàn chỉnh đã được phục hồi bằng cách áp dụng 1,5 mg l−1 kinetin vào môi trường rễ. Mặc dù có nhiều phương pháp điều trị đã được thử nghiệm liên quan đến cả khối phôi và phôi hoàn chỉnh, sự nảy mầm của phôi bình thường được quan sát một cách rải rác. Điều trị lạnh đã có hiệu quả trong việc kích thích tạo phôi soma thứ cấp với sự phát triển phôi đến giai đoạn lá mầm, nhưng không thúc đẩy sự nảy mầm của chúng. Tương tự, một nồng độ cao hơn (44–55 mg l−1) của sắt chelat so với nồng độ thường dùng trong môi trường nuôi cấy mô (36.7 mg l−1) đã tạo ra một sự gia tăng gần 50% số lượng phôi ở giai đoạn lá mầm trên mỗi khối phôi sau 3 tuần nuôi cấy. Trong số các cytokinins đã thử nghiệm, 1 mg l−1 6-benzylaminopurine và 0.1 mg l−1 thidiazuron có hiệu quả trong việc kích thích tạo phôi soma thứ cấp; tuy nhiên, mỗi loại đều thể hiện hiệu quả cao nhất với môi trường và điều kiện sinh thái cụ thể. Hơn nữa, việc áp dụng 1 mg l−1 thidiazuron đã biến đổi callus hình thái thành callus không hình thái, đặc biệt trong môi trường chứa 2% sucrose. Cuối cùng, môi trường không có hormone với 2% maltose đã nâng cao sự trưởng thành của phôi đến giai đoạn lá mầm bình thường. Bài báo này đã nâng cao nhận thức về nuôi cấy phôi và sản xuất cây trồng trong kiểu gen quan trọng này, mở ra hướng đi mới cho việc cải thiện gen thông qua các kỹ thuật công nghệ sinh học, chủ yếu nhằm mục đích điều chỉnh mô hình tăng trưởng của tán cây anh đào ngọt được ghép trên nó.
Từ khóa
#hormone #phôi soma #cây anh đào #chuyển gen #cải thiện gen #công nghệ sinh họcTài liệu tham khảo
Akiyoshi DE, Klee H, Amasino RM, Nester EW & Gordon MP (1984) T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. In: Proceedings of the National Academy of Science USA, Vol. 81 (pp. 5994–5998)
Ammirato PV (1983) Embryogenesis. In: Evans DA, Sharp WR, Ammirato PV & Yamada Y (eds) Handbook of Plant Cell Cultures, Vol. 1 (pp. 82–123)
Bates S, Preece JE, Navarrete NE, Van Sambeek JW & Gaffney GR (1992) Thidiazuron stimulates shoot organogenesis and somatic embryogenesis in white ash (Fraxinus americana L). Plant Cell Tiss. Org. Cult. 31: 21–29
Bewley JD & Black M (1985) Seeds: Germination, Structure and Composition. Physiology of Development and Germination. Plenum Press, New York
Cailloux F, Julien-Guerrier J, Linossier L & Coudret A (1996) Long-term somatic embryogenesis and maturation of somatic embryos in Hevea brasiliensis. Plant Sci. 120: 185–196
Chemma GS (1989) Somatic embryogenesis and plant regeneration from cell suspension and tissue cultures of mature Himalayan poplar (Populus ciliata). Plant Cell Rep. 8: 124–127
da Camara Machado A, Puschmann M, Puhringer H, Kremen R, Katinger H & Laimer da Camara Machado M (1995) Somatic embryogenesis of Prunus subhirtella autumno rosa and regeneration of transgenic plants after Agrobacterium-mediated transformation. Plant Cell Rep. 14: 335–340
Daigny G, Paul H, Sangwan RS & Sangwan-Norreel BS (1996) Factors influencing secondary somatic embryogenesis in Malus × domestica Borkh. (cv ‘Gloster 69’). Plant Cell Rep. 16: 153–157
David H, Domon JM, Savy C, Miannay N, Sulmont G, Dargent R & David A (1992) Evidence for early stages of somatic embryo development in a protoplast-derived cell culture of Prunus avium. Physiol. Plant 85: 301–307
Deng MD & Cornu D (1992) Maturation and germination of walnut somatic embryos. Plant Cell Tiss. Org. Cult. 28: 195–202
Druart P (1980) Plantlet regeneration from root callus of different Prunus species. Sci. Horticult. 12: 339–342
Druart P (1981) Embryogenèse somatique et obtention de plantules chez Prunus incisa × serrula (GM9) cultivé in vitro. Bull Rech. Agron Gemblooux 16: 205–220
Druart P (1990) Improvement of somatic embryogenesis of the cherry dwarf rootstock Inmil/GM9 by the use of different carbon sources. Acta Horticult. 280: 125–129
Durham RE & Parrott WA (1992) Repetitive somatic embryogenesis from peanut cultures in liquid medium. Plant Cell Rep. 11: 122–125
Feirer RP, Conkey JH & Verhagen SA (1989) Triclycerides in embryogenic conifer calli: a comparison with zygotic embryos. Plant Cell Rep. 8: 207–209
Garin D, Grenier E & Grenierdemarch G (1997) Somatic embryogenesis in wild cherry (Prunus avium) Plant Cell Tiss. Org. Cult. 48: 83–91
Gendy C, Sene M, Le BV, Vidal J & Van KTT (1996) Somatic embryogenesis and plant regeneration in Sorghum bicolor (L.) Moench. Plant Cell Rep. 15: 900–904
George EF & Scherington PD (1984) Plant Propagation by Tissue Culture. Exegetics Ltd. Eversley, Basingstoke, Hants. RG 27 OQY, Eversley Press, UK
Gutierrez-Pesce P, Taylor K, Muleo R & Rugini E (1998) Somatic embryogenesis and shoot regeneration from transgenic roots of the cherry rootstock “Colt” (Prunus avium × P. pseudocerasus) mediated by pRi 1855 T-DNA of Agrobacterium rhizogenes. Plant Cell Rep. 17: 574–580
Hammerschlag FA, Bauchan G & Scorza R (1985) Regeneration of peach plants from callus derived from immature embryos. Theor. App. Genet. 70: 248–251
Havranek P & Vagera J (1979) Regulation of in vitro androgenesis in tobacco through iron-freen meia. Bio. Plant 21: 412–417
Heberle-Bors E (1980) Interaction of activated charcoal and iron chelates in anther cultures of Nicotiana and Atropa belladonna. Z. Pflanzenphysiol. 99: 339–347
Hristoforoglu K, Schmidt J & Bolhar-Nordenkampf H (1995) Development and germination of Abies alba somatic embryos. Plant Cell Tiss. Org. Cult. 40: 277–284
Jain M, Gupta PK & Newton RJ (1995) Somatic Embryogenesis in Woody Plants, Vol. 2, Angiosperms. Kluwer Academic Publishers, Dordrecht
James DJ, Passey AJ, Malhotra SB & Deeming DC (1982) Studies on the Control of Organogenesis and Embryogenesis in Apple and Cherry Tissues. Report of the East Malling Research Station, 152
Jones OP, Gayner JA & Watkins R (1984) Plant regeneration from callus tissue culture of the cherry rootstock “Colt” (Prunus avium × P. pseudocerasus) and the apple rootstock M.25 (Malus pumila). J. Hort. Sci. 59: 463–467
Jumin HB & Nito N (1996) Plant regeneration via somatic embryogenesis from protoplast of Uganda cherry orange (Citropsis schweinfurthii). Plant Cell Rep. 15: 754–757
Lai FM & Mc Kersie BD (1994) Regulation of starch and protein accumulation in alfalfa (Medicago sativa L.) somatic embryos. Plant Sci. 100: 211–219
Loh CS, ShuW & Khor E (1997) High frequency production of embryos from liquid flask culture of oilseed rape. Biotechnol. Bioeng. 54: 231–238
Martinelli L & Mandolino G (1994) Genetic transformation and regeneration of transgenic plants in grapevine (Vitis rupestris S.). Theor. App. Genet. 88: 621–628
Martinelli L, Bragagna P, Poletti V & Scienza A (1991) Somatic embryogenesis from leaves and petioles-derived callus of Vitis rupestris. Plant Cell Rep. 12: 207–210
Martinelli L, Rugini E & Saccardo F (1996) Genetic transformation for biotic stress resistance in horticultural plants. In vitro 3: 69A
Mc Granahan GH, Leslie CA, Uratsu SL & Dandekar AM (1990) Improved efficiency of the walnut somatic embryos gene transfer system. Plant Cell Rep. 8: 512–516
Mc Granahan GH, Leslie CA, Uratsu SL, Martin LA & Dandekar AM (1988) Agrobacterium-mediated transformation of walnut somatic embryos and regeneration of transgenic plant. Bio/Technology 6: 800–804
Mo LH, von Arnold S & Lagercrantz U (1989) Morphogenetic and genetic stability in long-term embryogenic cultures and somatic embryos of Norway spruce (Picea abies L. Karst). Plant Cell Rep. 8: 375–378
Muralidharan EM, Gupta PK & Mascarehas AF (1989) Plantlet production through high frequency somatic embryogenesis in long-term cultures of Eucalytys citriodora. Plant Cell Rep. 8: 41–43
Murashige T & Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15: 473–497
Nitsch JP (1969) Experimental androgenesis in Nicotiana. Phytomorphology 19: 389–404
Nørgaard JV (1997). Somatic embryo maturation and plant regeneration in Abies nordmanniana LK. Plant Sci. 124: 211–221
Raj Bhansali R, Driver JA & Durzan DJ (1990) Rapid multiplication of adventitious somatic embryos in peach and nectarine by secondary embryogenesis. Plant Cell Rep. 9: 280–284
Raquin C (1983) Utilisation of different sugars as carbon source for in vitro anther culture of Petunia (axillaris × hybrida). Int. J. Plant Physiol. 111: 453–457
Rugini E, Biasi R & Muleo R. (2000) Olive (Olea europaea var. sativa) Transformation. In: S.M. Jain and S.C Minocha (eds) Molecular Biology of Woody Plants, Vol. 2 (pp. 245–279). Kluwer Academic Publishers, Dordrecht
Schroder G, Waffenschmidt S, Weiler EW & Schroder J (1983) The T-region of Ti plamids codes for an enzyme synthesizing indole-3-acetic acid. Eur. Mol. Biol. Org. J. 2: 403–409
Strickland SG, Nichol JW, Mc Gall GM & Stuart DA (1987) Effect of carbohydrate source on alfalfa somatic embryogenesis. Plant Sci. 48: 113–121
Thomashow MF, Hugly S, Buchholz WG & Thomashow LS (1986) Molecular basis for the auxin independent phenotype of crown gall tumour tissue. Science 231: 616–618
Tulecke W & Mc Granahan G (1985) Somatic embryogenesis and plant regeneration from cotyledons of walnut, Junglans regia. Plant Sci. 40: 57–63
Visser C, Qureshi JA, Gill R & Saxena PK (1992) Role of thidiazuron: substitution of auxin-cytokinin requirements of somatic embryogenesis in hypocotyl cultures of geranium. Plant Physiol. 99: 1704–1707
Walkey DG (1972) Production of apple plantlets from axillary bud meristems. Can. J. Plant Sci. 52: 1085–1087