Influence of phase interface properties on mechanical characteristics of metal ceramic composites

С. В. Астафуров1, Evgeny V. Shilko1, В. Е. Овчаренко2
1Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, Tomsk, 634055, Russia
2Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, Tomsk, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chawla, N. and Chawla, K.K., Metal Matrix Composites, New York: Springer, 2006.

Kainer, K.U., Metal Matrix Composites: Custom-Made Materials for Automotive and Aerospace Engineering, Kainer, K.U., Ed., Weinheim: Wiley-VCH Verlag, 2006, pp. 1–54.

Mortensen, A., Concise Encyclopedia of Composite Materials, Oxford: Elsevier, 2000.

Pramanik, A., Zhang, L.C., and Arsecularante, J.A., Prediction of Cutting Forces in Machining of Metal Matrix Composites, Int. J. Mach. Tools Manufacture, vol. 46, no. 14, pp. 1795–1803.

Ovcharenko, V.E., Yu, B., and Psakhie, S.G., Electron-Beam Treatment of Tungsten-Free TiC/NiCr Cermet. I: Influence of Subsurface Layer Microctructure on Resistance to Wear during Cutting of Metals, J. Mater. Sci. Tech., 2005, vol. 21, no. 3, pp. 427–429.

Ovcharenko, V.E., Yu, B., Psakhie, S.G., and Lapshin, O.V., Electron-Beam Treatment of Tungsten-Free TiC/NiCr Cermet II: Structural Transformations in the Subsurface Layer, J. Mater. Sci. Tech., 2006, vol. 22, no. 4, pp. 511–513.

Vityaz, P.A. and Grechikhin, L.I., Nanotechnology for Producing Titanium-Based Cermets, Phys. Mesomech., 2004, vol. 7, no. 5–6, pp. 51–56.

Chawla, N. and Chawla, K.K., Microstructure-Based Modeling of Deformation in Particle Reinforced Metal Matrix Composites, J. Mater. Sci., 2006, vol. 41, pp. 913–925.

Ayyar, A. and Chawla, N., Microstructure-Based Modeling of Crack Growth in Particle Reinforced Composites, Compos. Sci. Technol., 2006, vol. 66, pp. 1980–1994.

Kulkov, S.N., Formation of Micro- and Mesostructures in Metal Matrix Composites under Mechanical Loading, Phys. Mesomech., 2006, vol. 9, no. 1–2, pp. 73–80.

Bondar, M.P., Korchagin, M.A., Obodovskii, E.S., Panin, S.V., and Lukyanov, Ya.L., Quasidynamic Compaction of a Mesostructural Material with Inclusions Reinforced by Nanocrystalline Particles, Phys. Mesomech., 2009, vol. 12, no. 1–2, pp. 94–100.

Ivanov, Yu.F., Koval, N.N., and Ovcharenko, V.E., Electron-Beam Modification of TiC-NiCr Solid Solution. Surface Relief, Izv. Vuzov. Chern. Metal., 2007, no. 12, pp. 59–60.

Ovcharenko, V.E., Structural Evolution of a Plasma-Sprayed Metal-Ceramic Coating due to Pulsed Electron-Beam Treatment, Fiz. Khim. Obrab. Mat., 2010, no. 1, pp. 71–77.

Psakhie, S.G., Smolin, A.Y., Shilko, E.V., Anikeeva, G.M., Pogozhev, Y.S., Petrzhik, M.I., and Levashov E.A., Modeling Nanoindentation of TiCCaPON Coating on Ti Substrate using Movable Cellular Automaton Method, Comp. Mater. Sci., 2013, vol. 76, pp. 89–98.

Volkov-Bogorodsky, D.B., Evtushenko, Yu.G., Zubov, V.I., and Lurie, S.A., Calculation of Deformations in Nanocomposites Using the Block Multipole Method with the Analytical-Numerical Account of the Scale Effects, Comput. Math. Math. Phys., 2006, vol. 46, no. 7, pp. 1234–1253.

Singh, G., Yu, Y., Ernst, F., and Raj, R., Shear Strength and Sliding at a Metal-Ceramic (Aluminium-Spinel) Interface at Ambient and Elevated Temperatures, Acta Mater., 2007, vol. 55, pp. 3049–3057.

Oesterle, W., Prietzel, C., and Dmitriev, A.I., Investigation of Surface Film Nanostructure and Assessment of its Impact on Friction Force Stabilization during Automotive Braking, Int. J. Mater. Res., 2010, vol. 101, no. 5, pp. 669–675.

Dmitriev, A.I. and Oesterle, W., Modeling of Brake Pad-Disc Interface with Emphasis to Dynamics and Deformation of Structures, Tribol. Int., 2010, vol. 43, no. 4, pp. 719–727.

Psakhie, S.G., Horie, Y., Ostermeyer, G.P., Korostelev, S.Yu., Smolin, A.Yu., Shilko, E.V., Dmitriev, A.I., Blatnik, S., Spegel, M., and Zavsek, S., Movable Cellular Automata Method for Simulating Materials with Mesostructure, Theor. Appl. Fract. Mech., 2001, vol. 37, pp. 311–334.

Psakhie, S.G., Shilko, E.V., Smolin, A.Yu., Dimaki, A.V., Dmitriev, A.I., Konovalenko, Ig.S., Astafurov, S.V., and Zavshek, S. Approach to Simulation of Deformation and Fracture of Hierarchically Organized Heterogeneous Media, Including Contrast Media, Phys. Mesomech., 2011, vol. 14, no. 5–6, pp. 224–248.

Psakhie, S.G., Horie, Y., Shilko, E.V., Smolin, A.Yu., Dmitriev, A.I., and Astafurov, S.V., Discrete Element Approach to Modeling Heterogeneous Elastic-Plastic Materials and Media, Int. J. Terraspace Sci. Engng., 2011, vol. 3(1), pp. 93–125.

Psakhie, S., Shilko, E., Smolin, A., Astafurov, S., and Ovcharenko, V., Development of a Formalism of Movable Cellular Automaton Method for Numerical Modeling of Fracture of Heterogeneous Elastic-Plastic Materials, Fract. Struct. Integrity, 2013, no. 24, pp. 26–59.

Cundall, P.A. and Strack, O.D.L., A Discrete Numerical Model for Granular Assemblies, Geotechnique, 1979, vol. 29, no. 1, pp. 47–65.

Bicanic, N., Discrete Element Methods, Encyclopedia of Computational Mechanics, Stein, E., de Borst, R., and Hughes, J.R., Eds., Chichester: Wiley, 2004, pp. 311–337.

Munjiza, A., The Combined Finite-Discrete Element Method, Chichester: Wiley, 2004.

Astafurov, S.V., Shilko, E.V., Dimaki, A.V., and Psakhie, S.G., Development of Multiscale Approach to Modeling Mechanical Response of High-Strength Intermetallic Alloys on the Base of Movable Cellular Automaton Method, Proc. III Int. Conf. on Particle-Based Methods. Fundamentals and Applications (Particles-2013), 2013, pp. 624–629.

Psakhie, S., Ovcharenko, V., Yu, B., Shilko, E., Astafurov, S., Ivanov, Yu., Byeli, A., and Mokhovikov, A., Influence of Features of Interphase Boundaries on Mechanical Properties and Fracture Pattern in Metal-Ceramic Composites, J. Mater. Sci. Tech., 2013, vol. 29, no. 11, pp. 1025–1034.

Psakhie, S.G., Smolin, A.Yu., Stefanov, Yu.P., Makarov, P.V., and Chertov M.A., Modeling the Behavior of Complex Media by Jointly Using Discrete and Continuum Approaches, Tech. Phys. Let., 2004, vol. 30, no. 9, pp. 712–714.