Influence of mixed modifier fluoride on tuning the AC and dielectric properties of xBaF2–(50–x)CaF2–50B2O3 glass system

Ionics - Tập 29 - Trang 2757-2771 - 2023
N. F. M. Sahapini1,2, Tan Winie1,3, M. N. Azlan4, M. H. M. Zaid5, R. Hisam1
1Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
2Faculty of Applied Sciences, Universiti Teknologi MARA, Tapah Road, Malaysia
3Center for Functional Materials and Nanotechnology, Institute of Science, Universiti Teknologi MARA, Shah Alam, Malaysia
4Physics Department, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim, Malaysia
5Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia

Tóm tắt

This study examined the effect of mixed alkaline earth modifier fluoride on AC conductivity and dielectric properties in xBaF2–(50–x)CaF2–50B2O3 (x = 5–35 mol%) glass system. The impedance data showed a single-depressed semicircle with decreasing bulk resistance (Rb) with temperature. The change of $${\sigma }_{AC}$$ implied a non-linear relationship with BaF2, which induced a blocking effect on the mobility of the charge carriers at x ≤ 20 mol%, indicating the Mixed Alkaline Earth Effect (MAEE). The abrupt increase at x = 25 mol% was associated with the expansion of the glass network due to the formation of Non-Bridging Oxygen (NBO). All glass samples followed the Overlapping Large-Polaron Tunneling (OLPT) model for the conduction mechanism. The change in ε′ more prominent in low-frequency regions, signifying that polarization was contributed mainly by the space charge polarization. Electrical modulus analysis revealed non-Debye type relaxation, indicating temperature- and composition-dependent dynamic ion processes.

Tài liệu tham khảo

Elsad RA, Abdel-Aziz AM, Ahmed EM, Rammah YS, El-Agawany FI, Shams MS (2021) FT-IR, ultrasonic and dielectric characteristics of neodymium (III)/ erbium (III) lead-borate glasses: experimental studies. J Market Res 13:1363–1373. https://doi.org/10.1016/j.jmrt.2021.05.029 Shuhaimi SA et al (2022) Effects of mixed TeO2-B2O3 glass formers on optical and radiation shielding properties of 70[xTeO2+(1- x)B2O3]+15Na2O + 15K2O glass system. Phys Scr 97(4).https://doi.org/10.1088/1402-4896/ac5710 Barde RV, Nemade KR, Waghuley SA (2015) AC conductivity and dielectric relaxation in V2O5-P2O5-B2O3 glasses. J Asian Ceram Soc 3:116–122. https://doi.org/10.1016/j.jascer.2014.11.006 Abdel-Ghany AM, Abu-Khadra AS, Sadeq MS (2020) Influence of Fe cations on the structural and optical properties of alkali-alkaline borate glasses. J Non Cryst Solids 548(June):120320. https://doi.org/10.1016/j.jnoncrysol.2020.120320 Bengisu M (2016) Borate glasses for scientific and industrial applications: a review. J Mater Sci 51(5):2199–2242. https://doi.org/10.1007/s10853-015-9537-4. (Springer New York LLC) Pascuta P, Lungu R, Ardelean I (2010) FTIR and Raman spectroscopic investigation of some strontium-borate glasses doped with iron ions. J Mater Sci: Mater Electron 21(6):548–553. https://doi.org/10.1007/s10854-009-9955-7 Sabri NS, Yahya AK, Talari MK (2017) Anomalous optical properties of xSrO–10PbO–(90–x)B2O3 glass system. Trans Indian Inst Met 70(3):557–565. https://doi.org/10.1007/s12666-017-1043-8 Sabri NS, Yahya AK, Abd-Shukor R, Talari MK (2016) Anomalous elastic behaviour of xSrO-10PbO-(90–x)B2O3 glass system. J Non Cryst Solids 444:55–63. https://doi.org/10.1016/j.jnoncrysol.2016.04.038 El-Egili K, Doweidar H, Ramadan R, Altawaf A (2016) Role of F− ions in the structure and properties of BaF2-B2O3 glasses. J Non Cryst Solids 449:83–93. https://doi.org/10.1016/j.jnoncrysol.2016.07.014 Chowdari BVR, Rong Z (1995) Study of the fluorinated lithium borate glasses. Solid State Ion 78(1–2):133–142. https://doi.org/10.1016/0167-2738(95)00017-Z Krishna Murthy M, Murthy KSN, Veeraiah N (2000) Dielectric properties of NaF-B2O3 glasses doped with certain transition metal ions. Bull Mater Sci 23(4):285–293. https://doi.org/10.1007/bf02720084 Sokolov IA, Naraev VN, Nosakin AN, Pronkin AA (2000) On the nature of current carriers in glasses of the NaF-Na2O-B2O3 system. Glass Phys Chem 26(6):584–587. https://doi.org/10.1023/A:1007156332120 Doweidar H, El-Damrawi G, Abdelghany M (2012) Structure and properties of CaF2-B2O3 glasses. J Mater Sci 47(9):4028–4035. https://doi.org/10.1007/s10853-012-6256-y Abdelghany AM, ElBatal HA, Ramadan RM (2017) The effect of Li2O and LiF on structural properties of cobalt doped borate glasses. J King Saud Univ Sci 29(4):510–516. https://doi.org/10.1016/j.jksus.2016.09.003 Sokolov IA, Naraev VN, Nosakin AN, Pronkin AA (2000) Influence of MeF2 (Me = Mg, Ca, Sr, and Ba) on the electrical properties of glasses in the MeF2-Na2B4O7 system. Glass Phys Chem 26(4):383–389. https://doi.org/10.1007/BF02732004 Griebenow K, Bragatto CB, Kamitsos EI, Wondraczek L (2018) Mixed-modifier effect in alkaline earth metaphosphate glasses. J Non Cryst Solids 481:447–456. https://doi.org/10.1016/j.jnoncrysol.2017.11.041 Roling B, Ingram MD (2000) Mixed alkaline-earth effects in ion conducting glasses. J Non Cryst Solids 265(1):113–119. https://doi.org/10.1016/S0022-3093(99)00899-6 Kjeldsen J, Smedskjaer MM, Mauro JC, Youngman RE, Huang L, Yue Y (2013) Mixed alkaline earth effect in sodium aluminosilicate glasses. J Non Cryst Solids 369:61–68. https://doi.org/10.1016/j.jnoncrysol.2013.03.015 Sahapini NFM, Hisam R, Yahya AK (2022) Structural and optical properties of mixed alkaline earth fluoroborate xBaF2–(50–x)CaF2–50B2O3 glass system. Appl Phys A 128(3):223. https://doi.org/10.1007/s00339-022-05360-z Samdani, Ramadevudu G, Chary MN, Shareefuddin M (2017) Physical and spectroscopic studies of Cr3+ doped mixed alkaline earth oxide borate glasses. Mater Chem Phys 186. https://doi.org/10.1016/j.matchemphys.2016.11.009 Gao Y (2005) Dependence of the mixed alkali effect on temperature and total alkali oxide content in y[xLi2O·(1–x)Na2O]·(1-y)B2O3 glasses. J Solid State Chem 178(11):3376–3380. https://doi.org/10.1016/j.jssc.2005.08.027 Nagaraja N, Sankarappa T, Prashant Kumar M (2008) Electrical conductivity studies in single and mixed alkali doped cobalt-borate glasses. J Non Cryst Solids 354(14):1503–1508. https://doi.org/10.1016/j.jnoncrysol.2007.08.042 Moguš-Milanković A, Šantić A, Ličina V, Day DE (2005) Dielectric behavior and impedance spectroscopy of bismuth iron phosphate glasses. J Non Cryst Solids 351(40–42):3235–3245. https://doi.org/10.1016/j.jnoncrysol.2005.08.011 Bouaamlat H et al (2020) Dielectric properties, AC conductivity, and electric modulus analysis of bulk ethylcarbazole-terphenyl. Adv Mater Sci Eng 2020. https://doi.org/10.1155/2020/8689150 Oueslati A, Aydi A (2021) Impedance and modulus studies of Na0.9Ba0.1Nb0.9(Sn0.5Ti0.5)0.1O3 ceramic. J Adv Dielectr 11(2):1–8. https://doi.org/10.1142/S2010135X21500132 Pajkossy T (1994) Impedance of rough capacitive electrodes. J Electroanal Chem 364:11–125 Mohamed SN, Halimah MK, Subban RHY, Yahya AK (2021) AC conductivity and dielectric properties in mixed ionic–electronic 20Na2O–20CaO–(60 – x)B2O3–xV2O5 glasses. Physica B Condens Matter 602. https://doi.org/10.1016/j.physb.2020.412480 Hisam R, Yahya AK, Mohamed Kamari H, Talib ZA (2017) AC conductivity and dielectric behavior in mixed electronic-ionic 30Li2O–4MoO3–(66–x)TeO2–xV2O5 glass system. Ionics (Kiel) 23(6):1423–1437. https://doi.org/10.1007/s11581-017-1973-5 Ghosh A (1990) Frequency-dependent conductivity in bismuth-vanadate glassy semiconductors. Phys Rev B 41(3):1479–1488. https://doi.org/10.1103/PhysRevB.41.1479 Long AR (1982) Frequency-dependent loss in amorphous semiconductors. Adv Phys 31(5):553–637. https://doi.org/10.1080/00018738200101418 Mohamed SN, Yahya AK (2018) Effects of V2O5 on elastic, structural, and optical properties of mixed ionic–electronic 20Na2O–20CaO–(60–x)B2O3–xV2O5 glasses. Ionics (Kiel) 24(9):2647–2664. https://doi.org/10.1007/s11581-017-2396-z Hendi AA (2011) AC conductivity and dielectric measurements of bulk tertracyanoquinodimethane. Aust J Basic Appl Sci 5(7):380–386 Dhankhar S, Kundu RS, Dult M, Murugavel S, Punia R, Kishore N (2016) Electrical conductivity and modulus formulation in zinc modified bismuth boro-tellurite glasses. Indian J Phys 90(9):1033–1040. https://doi.org/10.1007/s12648-016-0850-9 Liu J, Duan CG, Yin WG, Mei WN, Smith RW, Hardy JR (2003) Dielectric permittivity and electric modulus in Bi2Ti4O11. J Chem Phys 119(5):2812–2819. https://doi.org/10.1063/1.1587685 Rahman S, Bale S, Vijaya Kumar R, Srinivasa Rao N (2010) Mixed cation effect in xR2O-(40–x)Na2O-50B2O3–10Bi2O3 (R = Li, K) glasses”. Mater Res Bull 45(10):1533–1536. https://doi.org/10.1016/j.materresbull.2010.06.004 Bendahhou A, Chourti K, El Bouayadi R, El Barkany S, Abou-Salama M (2020) Structural, dielectric and impedance spectroscopy analysis of Ba5CaTi1.94Zn0.06Nb8O30 ferroelectric ceramic. R Soc Chem 2020 10:28007–28018. https://doi.org/10.1039/d0ra05163b Calahoo C, Zwanziger JW (2017) The mixed modifier effect in ionic conductivity and mechanical properties for xMgO-(50–x)CaO-50SiO2 glasses. J Non Cryst Solids 460:6–18. https://doi.org/10.1016/j.jnoncrysol.2017.01.017 Walia T, Singh K (2021) Mixed alkaline earth modifiers effect on thermal, optical and structural properties of SrO-BaO-SiO2-B2O3-ZrO2 glass sealants. J Non Cryst Solids 564. https://doi.org/10.1016/j.jnoncrysol.2021.120812 Japari SJ, Yahya AK, Hisam R (2020) Effects of mixed-alkali oxides on AC conductivity and dielectric properties of xNa2O-(20-x)K2O-30V2O5–50TeO2 glasses. Results Phys 16. https://doi.org/10.1016/j.rinp.2019.102905 Kulkarni AR, Lunkenheimer P, Loidl A (2000) Mixed alkali effect in the ac conductivity of glasses. Mater Chem Phys 63(1):93–97. https://doi.org/10.1016/S0254-0584(99)00212-6 Imre W, Divinski SV, Voss S, Berkemeier F, Mehrer H (2006) A revised view on the mixed-alkali effect in alkali borate glasses. J Non Cryst Solids 352(8):783–788. https://doi.org/10.1016/j.jnoncrysol.2006.02.008 Venkateswara Rao G, Shashikala HD (2014) Structural, optical and mechanical properties of ternary CaO-CaF2-P2O5 glasses. J Adv Ceram 3(2):109–116. https://doi.org/10.1007/s40145-014-0099-8 Shaisha EE, El-Desouki Sh F, Shaltout I, Bahgat AA (2006) Electrical relaxation in mixed alkali Bi2O3-K2O-Li2O-Fe2O3 glasses. J Mater Sci Technol 22(5):701–707 Speight JG (2020) The properties of water. In: Natural Water Remediation, pp 53–89. https://doi.org/10.1016/B978-0-12-803810-9.00002-4 Chakroun R, Jamoussi B, Al-Mur B, Timoumi A, Essalah K (2021) Impedance spectroscopy and dielectric relaxation of Imidazole-Substituted Palladium(II) Phthalocyanine (ImPdPc) for organic solar cells. ACS Omega 6:10655–10667. https://doi.org/10.1021/acsomega.1c00034 Chérif SF, Chérif A, Dridi W, Zid MF (2020) Ac conductivity, electric modulus analysis, dielectric behavior and Bond Valence Sum analysis of Na3Nb4As3O19 compound. Arab J Chem 13(6):5627–5638. https://doi.org/10.1016/j.arabjc.2020.04.003 Rani S, Sanghi S, Ahlawat N, Agarwal A (2014) Influence of Bi2O3 on thermal, structural and dielectric properties of lithium zinc bismuth borate glasses. J Alloys Compd 597:110–118. https://doi.org/10.1016/j.jallcom.2014.01.211 Provenzano V, Boesch LP, Volterra V, Moynihan CT, Macedo PB (1972) Electrical Relaxation in Na20.3Si02 Glass. J Am Ceram Soc 55(10):492–496 Majhi K, Vaish R, Paramesh G, Varma KBR (2013) Electrical transport characteristics of ZnO-Bi2O3-B2O3 glasses. Ionics (Kiel) 19(1):99–104. https://doi.org/10.1007/s11581-012-0712-1 Vaish R, Varma KBR (2011) Electrical relaxation and transport in 0.5Cs2O-0.5Li2O-3B2O3 Glasses. IEEE Trans Dielectr Electr Insul 18(1):155–161. https://doi.org/10.1109/TDEI.2011.5704505