Influence of milled glass fillers on the impact and compression after impact behavior of glass/epoxy composite laminates
Tài liệu tham khảo
Aktas, 2009, An experimental investigation of the impact response of composite laminates, Compos. Struct., 87, 307, 10.1016/j.compstruct.2008.02.003
Atas, 2013, Thickness effect on repeated impact response of woven fabric composite plates, Composites Part B, 49, 80, 10.1016/j.compositesb.2013.01.019
Dhakal, 2012, Low-velocity impact response of non-woven hemp fibre reinforced unsaturated polyester composites: influence of impactor geometry and impact velocity, Compos. Struct., 94, 2756, 10.1016/j.compstruct.2012.04.004
Naik, 2001, Impact response and damage tolerance characteristics of glass–carbon/epoxy hybrid composite plates, Composites Part B, 32, 565, 10.1016/S1359-8368(01)00036-1
Gustin, 2005, Low velocity impact of combinationKevlar/carbon fiber sandwich composites, Compos. Struct., 69, 396, 10.1016/j.compstruct.2004.07.020
Caminero, 2018, Experimental study of the influence of thickness and ply-stacking sequence on the compression after impact strength of carbon fibre reinforced epoxy laminates, Polym. Test., 66, 360, 10.1016/j.polymertesting.2018.02.009
Thanomsilp, 2003, Penetration impact resistance of hybrid composites based on commingled yarn fabrics, Compos. Sci. Technol., 63, 467, 10.1016/S0266-3538(02)00233-6
Bibo, 1988, Influence of reinforcement architecture on glass-fibre/epoxy composite systems, Compos. Sci. Technol., 58, 803, 10.1016/S0266-3538(97)00055-9
Ibekwe, 2007, Impact and post impact response of laminated beams at low temperatures, Compos. Struct., 79, 12, 10.1016/j.compstruct.2005.11.025
De Freitas, 1998, Failure: mechanisms on composite specimens subjected compression after impact, Compos. Struct., 42, 365, 10.1016/S0263-8223(98)00081-6
Aktas, 2009, Comparison after impact behavior of laminated composite plates subjected to low velocity impact in high temperature, Compos. Struct., 89, 77, 10.1016/j.compstruct.2008.07.002
Dhakal, 2014, Influence of temperature and impact velocity on the impact response of jute/UP composites, Polym. Test., 35, 10, 10.1016/j.polymertesting.2014.02.002
Riew, 1993
Garg, 1988, Failure mechanisms in toughened epoxy resins – a review, Compos. Sci. Technol., 31, 179, 10.1016/0266-3538(88)90009-7
Thostenson, 2005, Nanocomposites in context, Compos. Sci. Technol., 65, 491, 10.1016/j.compscitech.2004.11.003
Ashrafi, 2011, Enhancement of mechanical performance of epoxy/carbon fiber laminates composites using single-walled carbon nanotubes, Compos. Sci. Technol., 71, 1569, 10.1016/j.compscitech.2011.06.015
Kostopoulos, 2010, Impact and after-impact properties of carbon fibre reinforced composites enhanced with multi-wall carbon nanotubes, Compos. Sci. Technol., 70, 553, 10.1016/j.compscitech.2009.11.023
Ruiz-Perez, 2008, Toughening by nanostructure, Polymer, 49, 4475, 10.1016/j.polymer.2008.07.048
Gojny, 2005, Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – a comparative study, Compos. Sci. Technol., 65, 2300, 10.1016/j.compscitech.2005.04.021
Johnsen, 2007, Toughening mechanisms of nanoparticle-modified epoxy polymers, Polymer, 48, 530, 10.1016/j.polymer.2006.11.038
Nezhad, 2018, Effect of morphological changes due to increasing carbon nanoparticles content on the quasi-static mechanical response of epoxy resin, Polymers, 10, 10.3390/polym10101106
Soliman, 2012, Low-velocity impact of thin woven carbon fabric composites incorporating multi-walled carbon nanotubes, Int. J. Impact Eng., 47, 39, 10.1016/j.ijimpeng.2012.03.002
Zhu, 2012, Effects of carbon nanofiller functionalization and distribution on interlaminar fracture toughness of multi-scale reinforced polymer composites, Carbon, 50, 1316, 10.1016/j.carbon.2011.11.001
Bekyarova, 2007, Functionalized single-walled carbon nanotubes for carbon fiber epoxy composites, J. Phys. Chem. C, 111, 17865, 10.1021/jp071329a
Mgbemena, 2018, Accelerated microwave curing of fibre-reinforced thermoset polymer composites for structural applications: a review of scientific challenges, Compos. Appl. Sci. Manuf., 115, 88, 10.1016/j.compositesa.2018.09.012
Hamad, 2013, Recycling of waste from polymer materials: an overview of the recent works, Polym. Degrad. Stabil., 98, 2801, 10.1016/j.polymdegradstab.2013.09.025
Reis, 2014, Impact strength of composites with nano-enhanced resin after fire exposure, Composites Part B, 56, 290, 10.1016/j.compositesb.2013.08.048
Jefferson Andrew, 2015, Compression after impact strength of repaired GFRP composite laminates under repeated impact loading, Compos. Struct., 133, 911, 10.1016/j.compstruct.2015.08.022
Schoeppner, 2000, Delamination threshold loads for low velocity impact on composite laminates, Compos. Appl. Sci. Manuf., 31, 903, 10.1016/S1359-835X(00)00061-0
Mishra, 2010, Failure initiation in composite structures under low velocity impact: analytical studies, Compos. Struct., 92, 436, 10.1016/j.compstruct.2009.08.024
Evci, 2012, An experimental investigation on the impact response of composite materials, Int. J. Impact Eng., 43, 40, 10.1016/j.ijimpeng.2011.11.009
Atas, 2008, An overall view on impact response of woven fabric composite plates, Compos. Struct., 82, 336, 10.1016/j.compstruct.2007.01.014
Gojny, 2005, Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites- A comparative study, Compos. Sci. Technol., 65, 2300, 10.1016/j.compscitech.2005.04.021
Qian, 2010, Carbon nanotube-based hierarchical composites: a review, J. Mater. Chem., 20, 4751, 10.1039/c000041h
Lotfian, 2018, Electrospun piezoelectric polymer nanofiber layers for enabling in situ measurement in high-performance composite laminates, ACS Omega, 3, 8891, 10.1021/acsomega.8b00940