Influence of microstructure on strain controlled low cycle fatigue crack initiation and propagation of Ti-55531 alloy
Tài liệu tham khảo
Cox, 2019, The effect of machining and induced surface deformation on the fatigue performance of a high strength metastable β titanium alloy, Int J Fatigue, 124, 26, 10.1016/j.ijfatigue.2019.02.033
Sangid, 2013, The physics of fatigue crack initiation, Int J Fatigue, 57, 58, 10.1016/j.ijfatigue.2012.10.009
Yadollahi, 2017, Additive manufacturing of fatigue resistant materials: Challenges and opportunities, Int J Fatigue, 98, 14, 10.1016/j.ijfatigue.2017.01.001
Banerjee, 2013, Perspectives on titanium science and technology, Acta Mater, 61, 844, 10.1016/j.actamat.2012.10.043
Helstroffer, 2020, Low cycle fatigue crack initiation in Ti-5Al-5Mo-5V-3Cr in relation to local crystallographic orientations, Mater Lett, 276, 128198, 10.1016/j.matlet.2020.128198
Boyer, 2013, The use of β titanium alloys in the aerospace industry, J Mater Eng Perform, 22, 2916, 10.1007/s11665-013-0728-3
Jéróme P. Advanced Materials and Technology for A380 Structure, Aviat Maint Eng 6 (2003) 50-52 [In Chinese]. 2003(6):50-52.
Committee AIH. ASM Handbook Volume 19 Fatigue And Fracture. Ohio: ASM International, 1996.
Huang, 2011, Cyclic deformation response of β-annealed Ti-5Al-5V-5Mo-3Cr alloy under compressive loading conditions, Metall Mater Trans A, 42, 2868, 10.1007/s11661-011-0705-0
Osovski, 2015, Grain boundary crack growth in metastable titanium β alloys, Acta Mater, 82, 167, 10.1016/j.actamat.2014.08.062
Weidong, 2000, Effect of beta flecks on low-cycle fatigue properties of Ti-10V-2Fe-3Al, J Mater Eng Perform, 9, 222, 10.1361/105994900770346187
Huang, 2017, Effect of microstructure on tensile properties of Ti-5Al-5Mo-5V-3Cr-1Zr alloy, J Alloy.Compd., 93, 582, 10.1016/j.jallcom.2016.09.233
Lütjering G, Williams JC. Titanium. Springer Berlin Heidelberg New York: Springer; 2007.
Tan, 2015, Effect of α-phase morphology on low-cycle fatigue behavior of TC21 alloy, Int J Fatigue, 75, 1, 10.1016/j.ijfatigue.2015.01.010
1998
2009
Xu, 2021, Influence of microstructure on cyclic deformation response and micromechanics of Ti–55531 alloy, Mater Sci Eng A, 803, 10.1016/j.msea.2020.140505
Huang, 2017, Effect of microstructure on high cycle fatigue behavior of Ti–5Al–5Mo–5V–3Cr–1Zr titanium alloy, Int J Fatigue, 94, 30, 10.1016/j.ijfatigue.2016.09.005
Tan, 2018, Comparison of fatigue crack initiation behavior in different microstructures of TC21 titanium alloy, MATEC Web Confer, 165, 4014, 10.1051/matecconf/201816504014
Han, 2020, Microstructure-sensitive modeling of competing failure mode between surface and internal nucleation in high cycle fatigue, Int J Plast, 126, 102622, 10.1016/j.ijplas.2019.11.001
Ma, 2018, Fatigue crack tip plastic zone of α + β titanium alloy with Widmanstatten microstructure, J Mater Sci Technol, 34, 2107, 10.1016/j.jmst.2018.03.012
Gao, 2019, Deformation in fatigue crack tip plastic zone and its role in crack propagation of titanium alloy with tri-modal microstructure, Mater Sci Eng A, 739, 198, 10.1016/j.msea.2018.10.049
Williams, 2011, On the Correlation Between Fatigue Striation Spacing and Crack Growth Rate: A Three-Dimensional (3-D) X-ray Synchrotron Tomography Study, Metall Mater Trans A, 42, 3845, 10.1007/s11661-011-0963-x
Bulloch, 2010, A detailed study of the relationship between fatigue crack growth rate and striation spacing in a range of low alloy ferritic steels, Eng Fail Anal, 17, 168, 10.1016/j.engfailanal.2009.04.028
Foltz, 2011, Formation of grain boundary α in β Ti alloys: its role in deformation and fracture behavior of these alloys, Metall Mater Trans A, 42, 645, 10.1007/s11661-010-0322-3
Pilchak, 2010, Crystallography of fatigue crack initiation and growth in fully lamellar Ti-6Al-4V, Metall Mater Trans A, 41A, 106, 10.1007/s11661-009-0064-2
Birosca, 2011, 3-D observations of short fatigue crack interaction with lamellar and duplex microstructures in a two-phase titanium alloy, Acta Mater, 59, 1510, 10.1016/j.actamat.2010.11.015
Wen, 2019, Effect of microstructure on tensile properties, impact toughness and fracture toughness of TC21 alloy, Mater Des, 180, 10.1016/j.matdes.2019.107898
Huang, 2021, Tensile performance and impact toughness of Ti-55531 alloy with multilevel lamellar microstructure, J Mater Sci, 56, 8848, 10.1007/s10853-021-05844-y
Chan, 1981, Deformation of an alloy with a lamellar microstructure: experimental behavior of individual widmanstatten colonies of an α-β titanium alloy, Metall Mater Trans A, 12, 1899, 10.1007/BF02643801
Huang, 2017, High cycle fatigue behavior of Ti–5Al–5Mo–5V–3Cr–1Zr titanium alloy with lamellar microstructure, Mater Sci Eng, A, 682, 107, 10.1016/j.msea.2016.11.014
Huang, 2017, Effect of microstructure on torsion properties of Ti–5Al–5Mo–5V–3Cr–1Zr alloy, Mater Sci Eng, A, 682, 202, 10.1016/j.msea.2016.11.049
Namakian, 2018, An atomic displacive model for{10-12}<-1011>twinning in hexagonal close packed metals with the emphasis on the role of partial stacking faults in formation of 10–12 twins, Acta Mater, 150, 381, 10.1016/j.actamat.2018.03.028
Birosca, 2009, Three-dimensional characterization of fatigue cracks in Ti-6246 using X-ray tomography and electron backscatter diffraction, Acta Mater, 57, 5834, 10.1016/j.actamat.2009.08.009
Shao, 2013, Crack initiation and mechanical properties of TC21 titanium alloy with equiaxed microstructure, Mater Sci Eng, A, 586, 215, 10.1016/j.msea.2013.08.012
Huang, 2017, High cycle fatigue behavior of Ti–5Al–5Mo–5V–3Cr–1Zr titanium alloy with bimodal microstructure, J Alloy Compd, 695, 1966, 10.1016/j.jallcom.2016.11.031
Bantounas, 2009, The effect of grain orientation on fracture morphology during high-cycle fatigue of Ti–6Al–4V, Acta Mater, 57, 3584, 10.1016/j.actamat.2009.04.018
Bantounas, 2007, Effect of microtexture on fatigue cracking in Ti–6Al–4V, Acta Mater, 55, 5655, 10.1016/j.actamat.2007.06.034
Ma, 2017, Deformation twinning in fatigue crack tip plastic zone of Ti-6Al-4V alloy with Widmanstatten microstructure, Mater Charact, 132, 338, 10.1016/j.matchar.2017.08.029
Tan, 2018, Characterization of deformation in primary α phase and crack initiation and propagation of TC21 alloy using in-situ SEM experiments, Mater Sci Eng, A, 725, 33, 10.1016/j.msea.2018.03.123