Influence of microstructure on strain controlled low cycle fatigue crack initiation and propagation of Ti-55531 alloy

International Journal of Fatigue - Tập 156 - Trang 106678 - 2022
Zilu Xu1, Chaowen Huang1,2,3, Mingpan Wan1, Changsheng Tan4, Yongqing Zhao5, Shengli Ji2, Weidong Zeng3
1National & Local Joint Engineering Laboratory for High-Performance Metal Structure Materials and Advanced Manufacturing Technology, Guizhou University, Guiyang 550025, China
2Guizhou Anda Aviation Forging Co., Ltd, Anshun, 561000, China
3State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
4School of Materials Science and Engineering, Xi’an University of Technology, Xi’an, 710048, China
5Northwest Research Institute of Nonferrous Metals, Xi'an 710016, China

Tài liệu tham khảo

Cox, 2019, The effect of machining and induced surface deformation on the fatigue performance of a high strength metastable β titanium alloy, Int J Fatigue, 124, 26, 10.1016/j.ijfatigue.2019.02.033 Sangid, 2013, The physics of fatigue crack initiation, Int J Fatigue, 57, 58, 10.1016/j.ijfatigue.2012.10.009 Yadollahi, 2017, Additive manufacturing of fatigue resistant materials: Challenges and opportunities, Int J Fatigue, 98, 14, 10.1016/j.ijfatigue.2017.01.001 Banerjee, 2013, Perspectives on titanium science and technology, Acta Mater, 61, 844, 10.1016/j.actamat.2012.10.043 Helstroffer, 2020, Low cycle fatigue crack initiation in Ti-5Al-5Mo-5V-3Cr in relation to local crystallographic orientations, Mater Lett, 276, 128198, 10.1016/j.matlet.2020.128198 Boyer, 2013, The use of β titanium alloys in the aerospace industry, J Mater Eng Perform, 22, 2916, 10.1007/s11665-013-0728-3 Jéróme P. Advanced Materials and Technology for A380 Structure, Aviat Maint Eng 6 (2003) 50-52 [In Chinese]. 2003(6):50-52. Committee AIH. ASM Handbook Volume 19 Fatigue And Fracture. Ohio: ASM International, 1996. Huang, 2011, Cyclic deformation response of β-annealed Ti-5Al-5V-5Mo-3Cr alloy under compressive loading conditions, Metall Mater Trans A, 42, 2868, 10.1007/s11661-011-0705-0 Osovski, 2015, Grain boundary crack growth in metastable titanium β alloys, Acta Mater, 82, 167, 10.1016/j.actamat.2014.08.062 Weidong, 2000, Effect of beta flecks on low-cycle fatigue properties of Ti-10V-2Fe-3Al, J Mater Eng Perform, 9, 222, 10.1361/105994900770346187 Huang, 2017, Effect of microstructure on tensile properties of Ti-5Al-5Mo-5V-3Cr-1Zr alloy, J Alloy.Compd., 93, 582, 10.1016/j.jallcom.2016.09.233 Lütjering G, Williams JC. Titanium. Springer Berlin Heidelberg New York: Springer; 2007. Tan, 2015, Effect of α-phase morphology on low-cycle fatigue behavior of TC21 alloy, Int J Fatigue, 75, 1, 10.1016/j.ijfatigue.2015.01.010 1998 2009 Xu, 2021, Influence of microstructure on cyclic deformation response and micromechanics of Ti–55531 alloy, Mater Sci Eng A, 803, 10.1016/j.msea.2020.140505 Huang, 2017, Effect of microstructure on high cycle fatigue behavior of Ti–5Al–5Mo–5V–3Cr–1Zr titanium alloy, Int J Fatigue, 94, 30, 10.1016/j.ijfatigue.2016.09.005 Tan, 2018, Comparison of fatigue crack initiation behavior in different microstructures of TC21 titanium alloy, MATEC Web Confer, 165, 4014, 10.1051/matecconf/201816504014 Han, 2020, Microstructure-sensitive modeling of competing failure mode between surface and internal nucleation in high cycle fatigue, Int J Plast, 126, 102622, 10.1016/j.ijplas.2019.11.001 Ma, 2018, Fatigue crack tip plastic zone of α + β titanium alloy with Widmanstatten microstructure, J Mater Sci Technol, 34, 2107, 10.1016/j.jmst.2018.03.012 Gao, 2019, Deformation in fatigue crack tip plastic zone and its role in crack propagation of titanium alloy with tri-modal microstructure, Mater Sci Eng A, 739, 198, 10.1016/j.msea.2018.10.049 Williams, 2011, On the Correlation Between Fatigue Striation Spacing and Crack Growth Rate: A Three-Dimensional (3-D) X-ray Synchrotron Tomography Study, Metall Mater Trans A, 42, 3845, 10.1007/s11661-011-0963-x Bulloch, 2010, A detailed study of the relationship between fatigue crack growth rate and striation spacing in a range of low alloy ferritic steels, Eng Fail Anal, 17, 168, 10.1016/j.engfailanal.2009.04.028 Foltz, 2011, Formation of grain boundary α in β Ti alloys: its role in deformation and fracture behavior of these alloys, Metall Mater Trans A, 42, 645, 10.1007/s11661-010-0322-3 Pilchak, 2010, Crystallography of fatigue crack initiation and growth in fully lamellar Ti-6Al-4V, Metall Mater Trans A, 41A, 106, 10.1007/s11661-009-0064-2 Birosca, 2011, 3-D observations of short fatigue crack interaction with lamellar and duplex microstructures in a two-phase titanium alloy, Acta Mater, 59, 1510, 10.1016/j.actamat.2010.11.015 Wen, 2019, Effect of microstructure on tensile properties, impact toughness and fracture toughness of TC21 alloy, Mater Des, 180, 10.1016/j.matdes.2019.107898 Huang, 2021, Tensile performance and impact toughness of Ti-55531 alloy with multilevel lamellar microstructure, J Mater Sci, 56, 8848, 10.1007/s10853-021-05844-y Chan, 1981, Deformation of an alloy with a lamellar microstructure: experimental behavior of individual widmanstatten colonies of an α-β titanium alloy, Metall Mater Trans A, 12, 1899, 10.1007/BF02643801 Huang, 2017, High cycle fatigue behavior of Ti–5Al–5Mo–5V–3Cr–1Zr titanium alloy with lamellar microstructure, Mater Sci Eng, A, 682, 107, 10.1016/j.msea.2016.11.014 Huang, 2017, Effect of microstructure on torsion properties of Ti–5Al–5Mo–5V–3Cr–1Zr alloy, Mater Sci Eng, A, 682, 202, 10.1016/j.msea.2016.11.049 Namakian, 2018, An atomic displacive model for{10-12}<-1011>twinning in hexagonal close packed metals with the emphasis on the role of partial stacking faults in formation of 10–12 twins, Acta Mater, 150, 381, 10.1016/j.actamat.2018.03.028 Birosca, 2009, Three-dimensional characterization of fatigue cracks in Ti-6246 using X-ray tomography and electron backscatter diffraction, Acta Mater, 57, 5834, 10.1016/j.actamat.2009.08.009 Shao, 2013, Crack initiation and mechanical properties of TC21 titanium alloy with equiaxed microstructure, Mater Sci Eng, A, 586, 215, 10.1016/j.msea.2013.08.012 Huang, 2017, High cycle fatigue behavior of Ti–5Al–5Mo–5V–3Cr–1Zr titanium alloy with bimodal microstructure, J Alloy Compd, 695, 1966, 10.1016/j.jallcom.2016.11.031 Bantounas, 2009, The effect of grain orientation on fracture morphology during high-cycle fatigue of Ti–6Al–4V, Acta Mater, 57, 3584, 10.1016/j.actamat.2009.04.018 Bantounas, 2007, Effect of microtexture on fatigue cracking in Ti–6Al–4V, Acta Mater, 55, 5655, 10.1016/j.actamat.2007.06.034 Ma, 2017, Deformation twinning in fatigue crack tip plastic zone of Ti-6Al-4V alloy with Widmanstatten microstructure, Mater Charact, 132, 338, 10.1016/j.matchar.2017.08.029 Tan, 2018, Characterization of deformation in primary α phase and crack initiation and propagation of TC21 alloy using in-situ SEM experiments, Mater Sci Eng, A, 725, 33, 10.1016/j.msea.2018.03.123