Ảnh hưởng của methylphenidate đến sự phát triển não bộ – Cập nhật các thí nghiệm gần đây trên động vật

Behavioral and Brain Functions - Tập 2 - Trang 1-14 - 2006
Thorsten Grund1, Konrad Lehmann1, Nathalie Bock2, Aribert Rothenberger2, Gertraud Teuchert-Noodt1
1Department of Neuroanatomy, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
2Child and Adolescent Psychiatry, University of Göttingen, Göttingen, Germany

Tóm tắt

Methylphenidate (MPH) là thuốc được sử dụng phổ biến nhất để điều trị rối loạn tăng động giảm chú ý (ADHD) ở trẻ em một cách hiệu quả và an toàn. Mặc dù thuốc này được sử dụng rộng rãi trong một trong những giai đoạn phát triển não bộ nhạy cảm và có tính dẻo dai nhất, nhưng cho đến nay, rất ít thông tin được biết đến về tác động lâu dài của nó đối với cấu trúc và chức năng của não. Do đó, bài tổng quan ngắn này cập nhật ảnh hưởng của MPH đến sự phát triển của não, vì các nghiên cứu gần đây trên người và động vật cho thấy MPH làm thay đổi hệ thống dopamine với các tác động lâu dài vượt qua cả khi điều trị đã kết thúc. Các nghiên cứu trên động vật cho thấy rằng tác động của MPH có thể phụ thuộc vào hệ thống phản ứng thần kinh: trong khi các tham số cấu trúc và chức năng được cải thiện bởi MPH ở những động vật có rối loạn tâm thần vận động, chúng lại không thay đổi hoặc tồi tệ hơn ở những cá thể khỏe mạnh. Mặc dù các nghiên cứu hành vi gần đây không hoàn toàn ủng hộ tác động khác biệt như vậy của MPH trong ADHD, nhưng các nghiên cứu trên động vật chắc chắn khuyến khích việc nghiên cứu thêm về vấn đề này. Hơn nữa, việc lạm dụng MPH, khi (hiếm khi) được tiêm tĩnh mạch, có thể thậm chí làm tổn hại quá trình trưởng thành của các sợi dopamine trong các khu vực não dưới vỏ. Điều này nhấn mạnh sự cần thiết phải đánh giá và chẩn đoán lâm sàng cẩn thận về các triệu chứng của ADHD không chỉ trong bối cảnh kê đơn MPH. Do đó, cần đảm bảo rằng MPH chỉ được cung cấp cho trẻ em có triệu chứng ADHD rõ rệt dẫn đến suy giảm tâm lý xã hội. Dữ liệu từ các nghiên cứu trên động vật cho thấy rằng trong những điều kiện như vậy, MPH hỗ trợ sự phát triển não bộ và hành vi liên quan ở trẻ em mắc ADHD.

Từ khóa

#Methylphenidate #ADHD #sự phát triển não bộ #hệ thống dopaminergic #rối loạn tâm thần vận động

Tài liệu tham khảo

Rothenberger A, Dopfner M, Sergeant J, Steinhausen HC: ADHD – beyond core symptoms. Not only a European perspective. Eur Child Adolesc Psychiatry. 2004, 13 (Suppl 1): Barbaresi WJ, Katusic SK, Colligan RC, Pankratz VS, Weaver AL, Weber KJ: How common is attention-deficit/hyperactivity disorder? Incidence in a population-based birth cohort in Rochester, Minn. Arch Pediatr Adolesc Med. 2002, 156: 217-224. Biederman J, Faraone SV: Attention-deficit hyperactivity disorder. Lancet. 2005, 366: 237-248. Nigg JT: Neuropsychologic theory and findings in attention-deficit/hyperactivity disorder: the state of the field and salient challenges for the coming decade. Biol Psychiatry. 2005, 57: 1424-1435. Sonuga-Barke EJ: Causal models of attention-deficit/hyperactivity disorder: from common simple deficits to multiple developmental pathways. Biol Psychiatry. 2005, 57: 1231-1238. Viggiano D, Vallone D, Ruocco LA, Sadile AG: Behavioural, pharmacological, morpho-functional molecular studies reveal a hyperfunctioning mesocortical dopamine system in an animal model of attention deficit and hyperactivity disorder. Neurosci Biobehav Rev. 2003, 27: 683-689. Russell VA, Sagvolden T, Johansen EB: Animal models of attention-deficit hyperactivity disorder. Behav Brain Funct. 2005, 1: 9- Fone KC, Nutt DJ: Stimulants: use and abuse in the treatment of attention deficit hyperactivity disorder. Curr Opin Pharmacol. 2005, 5: 87-93. Rothenberger A, Danckaerts M, Dopfner M, Sergeant J, Steinhausen HC: EINAQ – a European educational initiative on Attention-Deficit Hyperactivity Disorder and associated problems. Eur Child Adolesc Psychiatry. 2004, 13 (Suppl 1): I31-I35. Spear LP, Brake SC: Periadolescence: age-dependent behavior and psychopharmacological responsivity in rats. Dev Psychobiol. 1983, 16: 83-109. Teicher MH, Andersen SL, Hostetter JC: Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens. Brain Res Dev Brain Res. 1995, 89: 167-172. Dawirs RR, Teuchert-Noodt G, Czaniera R: Maturation of the dopamine innervation during postnatal development of the prefrontal cortex in gerbils (Meriones unguiculatus). A quantitative immunocytochemical study. J Hirnforsch. 1993, 34: 281-290. Kalsbeek A, Voorn P, Buijs RM, Pool CW, Uylings HB: Development of the dopaminergic innervation in the prefrontal cortex of the rat. J Comp Neurol. 1988, 269: 58-72. Froimowitz M, Patrick KS, Cody V: Conformational-analysis of methylphenidate and its structural relationship to other dopamine reuptake blockers such as CFT. Pharm Res. 1995, 12: 1430-1434. Gatley SJ, Pan DF, Chen RY, Chaturvedi G, Ding YS: Affinities of methylphenidate derivatives for dopamine, norepinephrine and serotonin transporters. Life Sci. 1996, 58: L231-L239. Krause KH, Dresel S, Krause J: Wirkmechanismus von Methylphenidat. Kinderärztliche Praxis; Sonderheft "Unaufmerksam und hyperaktiv". Edited by: Voss Hv. 2001, Mainz: Kirchheim-Verlag, 23-27. Wagner GC, Ricaurte GA, Johanson CE, Schuster CR, Seiden LS: Amphetamine induces depletion of dopamine and loss of dopamine uptake sites in caudate. Neurology. 1980, 30: 547-550. Zaczek R, Battaglia G, Contrera JF, Culp S, Desouza EB: Methylphenidate and pemoline do not cause depletion of rat-brain monoamine markers similar to that observed with methamphetamine. Toxicol Appl Pharmacol. 1989, 100: 227-233. Yuan J, McCann U, Ricaurte G: Methylphenidate and brain dopamine neurotoxicity. Brain Res. 1997, 767: 172-175. Moll GH, Hause S, Ruther E, Rothenberger A, Huether G: Early methylphenidate administration to young rats causes a persistent reduction in the density of striatal dopamine transporters. J Child Adolesc Psychopharmacol. 2001, 11: 15-24. Andersen SL: Stimulants and the developing brain. Trends Pharmacol Sci. 2005, 26: 237-243. Tennyson VM, Budininkas-Schoenebeck M, Gershon P: Effects of chronic reserpine treatment on development of maturity of the putamen in fetal rabbits. Brain Res Bull. 1982, 9: 651-662. Lauder JM: Neurotransmitters as morphogens. Prog Brain Res. 1988, 73: 365-387. Mattson MP: Neurotransmitters in the regulation of neuronal cytoarchitecture. Brain Res. 1988, 472: 179-212. Teuchert-Noodt G: Neuronal degeneration and reorganization: a mutual principle in pathological and in healthy interactions of limbic and prefrontal circuits. J Neural Transm [Suppl]. 2000, 60: 315-333. Whitaker-Azmitia PM, Murphy R, Azmitia EC: Stimulation of astroglial 5-HT1A receptors releases the serotonergic growth factor, protein S-100, and alters astroglial morphology. Brain Res. 1990, 528: 155-158. Ferchmin PA, Eterovic VA: Forty minutes of experience increase the weight and RNA content of cerebral cortex in periadolescent rats. Dev Psychobiol. 1986, 19: 511-519. Winterfeld KT, Teuchert-Noodt G, Dawirs RR: Social environment alters both ontogeny of dopamine innervation of the medial prefrontal cortex and maturation of working memory in gerbils (Meriones unguiculatus). J Neurosci Res. 1998, 52: 201-209. Keller A, Bagorda F, Hildebrandt K, Teuchert-Noodt G: Effects of Enriched and of Restricted Rearing on Both Neurogenesis and Synaptogenesis in the Hippocampal Dentate Gyrus of Adult Gerbils (Meriones unguiculatus). Neurology, Psychiatry and Brain Research. 2000, 8: 101-108. Liu D, Diorio J, Day JC, Francis DD, Meaney MJ: Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nat Neurosci. 2000, 3: 799-806. Brake WG, Zhang TY, Diorio J, Meaney MJ, Gratton A: Influence of early postnatal rearing conditions on mesocorticolimbic dopamine and behavioural responses to psychostimulants and stressors in adult rats. Eur J Neurosci. 2004, 19: 1863-1874. Papa M, Diewald L, Carey MP, Esposito FJ, Gironi Carnevale UA, Sadile AG: A rostro-caudal dissociation in the dorsal and ventral striatum of the juvenile SHR suggests an anterior hypo- and a posterior hyperfunctioning mesocorticolimbic system. Behav Brain Res. 2002, 130: 171-179. Grund T: Zum Einfluss von Methylphenidat (MPH; Ritalin®) auf die Reifung von Dopamin in limbo-präfrontalen Arealen von Meriones unguiculatus. Bielefeld; Dissertation. 2005 Grund T, Teuchert-Noodt G, Busche A, Neddens J, Moll GH, Dawirs RR: Oral Methylphenidate During Prepuberty Prevents Pharmacologically-Induced (Preweaning) Suppressive Development of Dopamine Projections into Prefrontal Cortex and Amygdala. 2005, Ernst M, Zametkin AJ, Matochik JA, Pascualvaca D, Jons PH, Cohen RM: High midbrain [18F]DOPA accumulation in children with attention deficit hyperactivity disorder. Am J Psychiatry. 1999, 156: 1209-1215. Cook EH, Stein MA, Krasowski MD, Cox NJ, Olkon DM, Kieffer JE: Association of attention-deficit disorder and the dopamine transporter gene. Am J Hum Genet. 1995, 56: 993-998. Gill M, Daly G, Heron S, Hawi Z, Fitzgerald M: Confirmation of association between attention deficit hyperactivity disorder and a dopamine transporter polymorphism. Mol Psychiatry. 1997, 2: 311-313. Castellanos FX, Tannock R: Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nat Rev Neurosci. 2002, 3: 617-628. Fisher SE, Francks C, McCracken JT, McGough JJ, Marlow AJ, MacPhie IL: A genomewide scan for loci involved in attention-deficit/hyperactivity disorder. Am J Hum Genet. 2002, 70: 1183-1196. Dougherty DD, Bonab AA, Spencer TJ, Rauch SL, Madras BK, Fischman AJ: Dopamine transporter density in patients with attention deficit hyperactivity disorder. Lancet. 1999, 354: 2132-2133. Krause KH, Dresel SH, Krause J, Kung HF, Tatsch K: Increased striatal dopamine transporter in adult patients with attention deficit hyperactivity disorder: effects of methylphenidate as measured by single photon emission computed tomography. Neurosci Lett. 2000, 285: 107-110. Cheon KA, Ryu YH, Kim YK, Namkoong K, Kim CH, Lee JD: Dopamine transporter density in the basal ganglia assessed with [123I]IPT SPET in children with attention deficit hyperactivity disorder. Eur J Nucl Med Mol Imaging. 2003, 30: 306-311. Ernst M, Zametkin AJ, Matochik JA, Jons PH, Cohen RM: DOPA decarboxylase activity in attention deficit hyperactivity disorder adults. A [fluorine-18]fluorodopa positron emission tomographic study. J Neurosci. 1998, 18: 5901-5907. Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH: Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology. 2002, 27: 699-711. Marsteller DA, Gerasimov MR, Schiffer WK, Geiger JM, Barnett CR, Borg JS: Acute handling stress modulates methylphenidate-induced catecholamine overflow in the medial prefrontal cortex. Neuropsychopharmacology. 2002, 27: 163-170. Hoffmann IS, Talmaciu RK, Ferro CP, Cubeddu LX: Sustained high release at rapid stimulation rates and reduced functional autoreceptors characterize prefrontal cortex dopamine terminals. J Pharmacol Exp Ther. 1988, 245: 761-772. Meador-Woodruff JH, Damask SP, Watson SJ: Differential expression of autoreceptors in the ascending dopamine systems of the human brain. Proc Natl Acad Sci U S A. 1994, 91: 8297-8301. Coulter CL, Happe HK, Bergman DA, Murrin LC: Localization and quantification of the dopamine transporter: comparison of [3H]WIN 35,428 and [125I]RTI-55. Brain Res. 1995, 690: 217-224. Sesack SR, Hawrylak VA, Matus C, Guido MA, Levey AI: Dopamine axon varicosities in the prelimbic division of the rat prefrontal cortex exhibit sparse immunoreactivity for the dopamine transporter. J Neurosci. 1998, 18: 2697-2708. Carboni E, Silvagni A: Dopamine reuptake by norepinephrine neurons: exception or rule?. Crit Rev Neurobiol. 2004, 16: 121-128. Volkow ND, Wang GJ, Fowler JS, Logan J, Gerasimov M, Maynard L: Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J Neurosci. 2001, 21: U1-U5. Grace AA: Cortical regulation of subcortical dopamine systems and its possible relevance to schizophrenia. J Neural Transm Gen Sect. 1993, 91: 111-134. Seeman P, Madras B: Methylphenidate elevates resting dopamine which lowers the impulse-triggered release of dopamine: a hypothesis. Behav Brain Res. 2002, 130: 79-83. Gittelman-Klein R, Klein DF, Katz S, Saraf K, Pollack E: Comparative effects of methylphenidate and thioridazine in hyperkinetic children. I. Clinical results. Arch Gen Psychiatry. 1976, 33: 1217-1231. Weizman A, Weitz R, Szekely GA, Tyano S, Belmaker RH: Combination of neuroleptic and stimulant treatment in attention deficit disorder with hyperactivity. J Am Acad Child Psychiatry. 1984, 23: 295-298. Levy F, Hay DA, McStephen M, Wood C, Waldman I: Attention-deficit hyperactivity disorder: a category or a continuum? Genetic analysis of a large-scale twin study. J Am Acad Child Adolesc Psychiatry. 1997, 36: 737-744. Pycock CJ, Carter CJ, Kerwin RW: Effect of 6-hydroxydopamine lesions of the medial prefrontal cortex on neurotransmitter systems in subcortical sites in the rat. J Neurochem. 1980, 34: 91-99. Deutch AY, Clark WA, Roth RH: Prefrontal cortical dopamine depletion enhances the responsiveness of mesolimbic dopamine neurons to stress. Brain Res. 1990, 521: 311-315. Jaskiw GE, Weinberger DR, Crawley JN: Microinjection of apomorphine into the prefrontal cortex of the rat reduces dopamine metabolite concentrations in microdialysate from the caudate nucleus. Biol Psychiatry. 1991, 29: 703-706. Mitchell JB, Gratton A: Partial dopamine depletion of the prefrontal cortex leads to enhanced mesolimbic dopamine release elicited by repeated exposure to naturally reinforcing stimuli. J Neurosci. 1992, 12: 3609-3618. Rosin DL, Clark WA, Goldstein M, Roth RH, Deutch AY: Effects of 6-hydroxydopamine lesions of the prefrontal cortex on tyrosine hydroxylase activity in mesolimbic and nigrostriatal dopamine systems. Neuroscience. 1992, 48: 831-839. Doherty MD, Gratton A: Medial prefrontal cortical D1 receptor modulation of the meso-accumbens dopamine response to stress: an electrochemical study in freely-behaving rats. Brain Res. 1996, 715: 86-97. Busche A, Polascheck D, Lesting J, Neddens J, Teuchert-Noodt G: Developmentally induced imbalance of dopaminergic fibre densities in limbic brain regions of gerbils (Meriones unguiculatus). J Neural Transm. 2004, 111: 451-463. Pitkanen A: Connectivity of the rat amygdaloid complex. The amygdala – A functional analysis. Edited by: Aggleton JP. 2000, Oxford: Oxford University Press, 31-115. Bertolucci-D'Angio M, Serrano A, Driscoll P, Scatton B: Involvement of mesocorticolimbic dopaminergic systems in emotional states. Prog Brain Res. 1990, 85: 405-416. Morgan MA, Romanski LM, LeDoux JE: Extinction of emotional learning: contribution of medial prefrontal cortex. Neurosci Lett. 1993, 163: 109-113. Rosenkranz JA, Grace AA: Dopamine attenuates prefrontal cortical suppression of sensory inputs to the basolateral amygdala of rats. J Neurosci. 2001, 21: 4090-4103. Davids E, Zhang K, Tarazi FI, Baldessarini RJ: Animal models of attention-deficit hyperactivity disorder. Brain Res Brain Res Rev. 2003, 42: 1-21. Russell VA: Dopamine hypofunction possibly results from a defect in glutamate-stimulated release of dopamine in the nucleus accumbens shell of a rat model for attention deficit hyperactivity disorder – the spontaneously hypertensive rat. Neurosci Biobehav Rev. 2003, 27: 671-682. Sagvolden T: Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neurosci Biobehav Rev. 2000, 24: 31-39. Russell V, de Villiers A, Sagvolden T, Lamm M, Taljaard J: Altered dopaminergic function in the prefrontal cortex, nucleus-accumbens and caudate-putamen of an animal-model of attention-deficit hyperactivity disorder – the spontaneously hypertensive rat. Brain Res. 1995, 676: 343-351. Kirouac GJ, Ganguly PK: Up-regulation of dopamine receptors in the brain of the spontaneously hypertensive rat: an autoradiographic analysis. Neuroscience. 1993, 52: 135-141. Watanabe Y, Fujita M, Ito Y, Okada T, Kusuoka H, Nishimura T: Brain dopamine transporter in spontaneously hypertensive rats. J Nucl Med. 1997, 38: 470-474. Carey MP, Diewald LM, Esposito FJ, Pellicano MP, Gironi Carnevale UA, Sergeant JA: Differential distribution, affinity and plasticity of dopamine D-1 and D-2 receptors in the target sites of the mesolimbic system in an animal model of ADHD. Behav Brain Res. 1998, 94: 173-185. Famularo R, Kinscherff R, Fenton T: Psychiatric diagnoses of maltreated children: preliminary findings. J Am Acad Child Adolesc Psychiatry. 1992, 31: 863-867. Dawirs RR, Teuchert-Noodt G, Czaniera R: Ontogeny of PFC-related behaviours is sensitive to a single non-invasive dose of methamphetamine in neonatal gerbils (Meriones unguiculatus). J Neural Transm. 1996, 103: 1235-1245. Polascheck D: Zum Einfluss epigenetischer Faktoren auf die Reifung aminerger Neurotransmitter im Corpus amygdaloideum und das Verhalten. Eine quantitative Studie an Meriones unguiculatus. Bielefeld; Dissertation. 2004 Dawirs RR, Teuchert-Noodt G, Czaniera R: The postnatal maturation of dopamine innervation in the prefrontal cortex of gerbils (Meriones unguiculatus) is sensitive to an early single dose of methamphetamine. A quantitative immunocytochemical study. J Brain Res. 1994, 35: 195-204. Neddens J, Lesting J, Dawirs RR, Teuchert-Noodt G: An early methamphetamine challenge suppresses the maturation of dopamine fibres in the nucleus accumbens of gerbils: on the significance of rearing conditions. J Neural Transm. 2002, 109: 141-155. Neddens J, Bagorda F, Busche A, Horstmann S, Moll GH, Dawirs RR: Epigenetic factors differentially influence postnatal maturation of serotonin (5-HT) innervation in cerebral cortex of gerbils: interaction of rearing conditions and early methamphetamine challenge. Brain Res Dev Brain Res. 2003, 146: 119-130. Lehmann K, Hundsdorfer B, Hartmann T, Teuchert-Noodt G: The acetylcholine fiber density of the neocortex is altered by isolated rearing and early methamphetamine intoxication in rodents. Exp Neurol. 2004, 189: 131-140. Puumala T, Ruotsalainen S, Jakala P, Koivisto E, Riekkinen P, Sirvio J: Behavioral and pharmacological studies on the validation of a new animal model for attention deficit hyperactivity disorder. Neurobiol Learn Mem. 1996, 66: 198-211. Arnsten AFT, Dudley AG: Methylphenidate improves prefrontal cortical cognitive function through alpha2 adrenoceptor and dopamine D1 receptor actions: Relevance to therapeutic effects in Attention Deficit Hyperactivity Disorder. Behav Brain Funct. 2005, 1: 2- Kitazawa S, Hirabayashi S, Kobayashi M: [Memory functions in children with attention deficit/hyperactivity disorder – the effects of methylphenidate on them]. No To Hattatsu. 2004, 36: 31-36. Barkley RA: Attention-Deficit Hyperactivity Disorder. 1990, New York: Guilforld Press Pliszka SR: The neuropsychopharmacology of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005, 57: 1385-1390. Walter J: Kann Ritalin (Methylphenidat) die Schulleistungen von Schülern mit Aufmerksamkeits- und Hyperaktivitätsproblemen verbessern? – Ein Literaturüberblick auf der Basis US-amerikanischer Forschung. Heilpädagogische Forschung. 2001, 27: 106-123. Walter J: Ritalin und Schulleistungen bei HKS: Befunde bei Langfrist- und Kombinationsbehandlungen. Sonderpädagogik. 2001, 31: 191-210. Lehmann K, Butz M, Teuchert-Noodt G: Offer and demand: proliferation and survival of neurons in the dentate gyrus. Eur J Neurosci. 2005, 21: 3205-3216. Rapoport JL, Inoff-Germain G: Responses to methylphenidate in Attention-Deficit/Hyperactivity Disorder and normal children: update 2002. J Atten Disord. 2002, 6 (Suppl 1): S57-S60. Rapoport JL, Buchsbaum MS, Zahn TP, Weingartner H, Ludlow C, Mikkelsen EJ: Dextroamphetamine: cognitive and behavioral effects in normal prepubertal boys. Science. 1978, 199: 560-563. Rapoport JL, Buchsbaum MS, Weingartner H, Zahn TP, Ludlow C, Mikkelsen EJ: Dextroamphetamine. Its cognitive and behavioral effects in normal and hyperactive boys and normal men. Arch Gen Psychiatry. 1980, 37: 933-943. Vaidya CJ, Austin G, Kirkorian G, Ridlehuber HW, Desmond JE, Glover GH: Selective effects of methylphenidate in attention deficit hyperactivity disorder: a functional magnetic resonance study. Proc Natl Acad Sci U S A. 1998, 95: 14494-14499. Elliott R, Sahakian BJ, Matthews K, Bannerjea A, Rimmer J, Robbins TW: Effects of methylphenidate on spatial working memory and planning in healthy young adults. Psychopharmacology (Berl). 1997, 131: 196-206. Mehta MA, Owen AM, Sahakian BJ, Mavaddat N, Pickard JD, Robbins TW: Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain. J Neurosci. 2000, 20: RC65- Moll GH, Heinrich H, Rothenberger A: Methylphenidate and intracortical excitability: opposite effects in healthy subjects and attention-deficit hyperactivity disorder. Acta Psychiatr Scand. 2003, 107: 69-72. Buitelaar JK, Van der Gaag RJ, Swaab-Barneveld H, Kuiper M: Prediction of clinical response to methylphenidate in children with attention-deficit hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 1995, 34: 1025-1032. Yang PB, Amini B, Swann AC, Dafny N: Strain differences in the behavioral responses of male rats to chronically administered methylphenidate. Brain Res. 2003, 971: 139-152. Yang PB, Swann AC, Dafny N: Chronic pretreatment with methylphenidate induces cross-sensitization with amphetamine. Life Sci. 2003, 73: 2899-2911. Andersen SL, Arvanitogiannis A, Pliakas AM, LeBlanc C, Carlezon WA: Altered responsiveness to cocaine in rats exposed to methylphenidate during development. Nat Neurosci. 2002, 5: 13-14. Bolanos CA, Barrot M, Berton O, Wallace-Black D, Nestler EJ: Methylphenidate treatment during pre- and periadolescence alters behavioral responses to emotional stimuli at adulthood. Biol Psychiatry. 2003, 54: 1317-1329. Biederman J, Wilens T, Mick E, Spencer T, Faraone SV: Pharmacotherapy of attention-deficit/hyperactivity disorder reduces risk for substance use disorder. Pediatrics. 1999, 104: E201-E205. Huss M, Lehmkuhl U: Methylphenidate and substance abuse: a review of pharmacology, animal, and clinical studies. J Atten Disord. 2002, 6 (Suppl 1): S65-S71. Brandon CL, Marinelli M, White FJ: Adolescent exposure to methylphenidate alters the activity of rat midbrain dopamine neurons. Biol Psychiatry. 2003, 54: 1338-1344. Kuczenski R, Segal DS: Dynamic changes in sensitivity occur during the acute response to cocaine and methylphenidate. Psychopharmacology (Berl). 1999, 147: 96-103. Gerasimov MR, Franceschi M, Volkow ND, Gifford A, Gatley SJ, Marsteller D: Comparison between intraperitoneal and oral methylphenidate administration: A microdialysis and locomotor activity study. J Pharmacol Exp Ther. 2000, 295: 51-57. Kuczenski R, Segal DS: Exposure of adolescent rats to oral methylphenidate: preferential effects on extracellular norepinephrine and absence of sensitization and cross-sensitization to methamphetamine. J Neurosci. 2002, 22: 7264-7271. Moll GH, Mehnert C, Wicker M, Bock N, Rothenberger A, Ruther E: Age-associated changes in the densities of presynaptic monoamine transporters in different regions of the rat brain from early juvenile life to late adulthood. Brain Res Dev Brain Res. 2000, 119: 251-257. Lesting J, Neddens J, Busche A, Teuchert-Noodt G: Hemisphere-specific effects on serotonin but not dopamine innervation in the nucleus accumbens of gerbils caused by isolated rearing and a single early methamphetamine challenge. Brain Res. 2005, 1035: 168-176. Volkow ND, Swanson JM: Variables that affect the clinical use and abuse of methylphenidate in the treatment of ADHD. Am J Psychiatry. 2003, 160: 1909-1918. Swanson JM, Volkow ND: Serum and brain concentrations of methylphenidate: implications for use and abuse. Neurosci Biobehav Rev. 2003, 27: 615-621. Faraj BA, Israili ZH, Perel JM, Jenkins ML, Holtzman SG, Cucinell SA: Metabolism and disposition of methylphenidate-14C: Studies in man and animals. J Pharmacol Exp Ther. 1974, 191: 535-547. Swanson JM, Volkow ND: Pharmacokinetic and pharmacodynamic properties of stimulants: implications for the design of new treatments for ADHD. Behav Brain Res. 2002, 130: 73-78. Self DW, Nestler EJ: Relapse to drug-seeking: neural and molecular mechanisms. Drug Alcohol Depend. 1998, 51: 49-60. Charach A, Ickowicz A, Schachar R: Stimulant treatment over five years: adherence, effectiveness, and adverse effects. J Am Acad Child Adolesc Psychiatry. 2004, 43: 559-567. Vaidya CJ, Bunge SA, Dudukovic NM, Zalecki CA, Elliott GR, Gabrieli JD: Altered neural substrates of cognitive control in childhood ADHD: evidence from functional magnetic resonance imaging. Am J Psychiatry. 2005, 162: 1605-1613. Pirot S, Glowinski J, Thierry AM: Excitatory responses evoked in prefrontal cortex by mediodorsal thalamic nucleus stimulation: influence of anaesthesia. Eur J Pharmacol. 1995, 285: 45-54. Pirot S, Glowinski J, Thierry AM: Mediodorsal thalamic evoked responses in the rat prefrontal cortex: influence of the mesocortical DA system. Neuroreport. 1996, 7: 1437-1441. Grace AA: Gating of information flow within the limbic system and the pathophysiology of schizophrenia. Brain Res Brain Res Rev. 2000, 31: 330-341. Rosenkranz JA, Grace AA: Cellular mechanisms of infralimbic and prelimbic prefrontal cortical inhibition and dopaminergic modulation of basolateral amygdala neurons in vivo. J Neurosci. 2002, 22: 324-337.