Influence of low-temperature fluids and post-depositional changes in the siliceous–pelagic sediments of the Central Indian Ocean Basin
Tóm tắt
Từ khóa
Tài liệu tham khảo
Amonkar, A., Iyer, S. D., & Babu, E. V. S. S. K. (2020). Extending the limit of widespread dispersed Toba volcanic glass shards and identification of new in-situ volcanic events in the Central Indian Ocean Basin. Journal of Earth System Science. https://doi.org/10.1007/s12040-020-01429-6
Amonkar, A. (2020). Volcanogenic and hydrothermal evidence from the Central Indian Ocean Basin since 60 Ma. Unpublished. Ph.D. Thesis, Goa University, India
Amonkar, A., Iyer, S. D., Babu, E. V. S. S. K., Sardar, A., Shailajha, N., & Manju, S. (2021). Fluid-driven hydrovolcanic activity along fracture zones and near seamounts: Evidence from deep-sea Fe-rich spherules. Acta Geologica Sinica. https://doi.org/10.1111/1755-6724.14697
Andrews, A. J. (1977). Low temperature fluid alteration of oceanic layer 2 basalts, DSDP Leg 37. Canadian Journal of Earth Science, 14, 911–926.
Arrhenius, G. (1963). Pelagic sediments. In M. N. Hill (Ed.), The Sea (Vol. 3, pp. 655–727). Wiley.
Banakar, V. K., Gupta, S. M., & Padmavathi, V. K. (1991). Abyssal sediment erosion in the Central Indian Basin: Evidence from radiochemical & radiolarian studies. Marine Geology, 96, 167–173.
Banerjee, R., & Iyer, S. D. (1991). Biogenic influence on the growth of ferro-manganese micronodules from the Central Indian Basin. Marine Geology, 97, 413–422.
Baragar, W. R. A., Plant, A. G., Pringle, G. J., & Schau, M. (1977). Petrology of altered selected units of Mid Atlantic Ridge basalts sampled from sites 332 and 335, DSDP. Canadian Journal of Earth Science, 14, 837–874.
Bass, M. N., Moberly, R., Rhodes, J. M., Chiyu, S., & Church, S. E. (1973). Volcanic rocks cored in the Central Pacific, Leg 17, Deep Sea Drilling Project. In Winterer, E.L., Ewing, J.I., et al. (eds.), Initial Reports of the Deep Sea Drilling Project. Washington, DC, US, Government Printing Office, 17, 429–503
Bonatti, E. (1967). Mechanisms of deep-sea volcanism in the South Pacific. In: Researches in Geochemistry. 2, edited by P. Abelson, 453–491
Bonatti, E. (1963). Zeolites in Pacific pelagic sediments. Transactions of New York Academy of Sciences, 25, 938–948.
Bonatti, E. (1965). Palagonite, hyaloclastite, and alteration of volcanic glass in the ocean. Bulletin of Volcanology, 28, 257–269.
Borole, D. V. (1993). Late Pleistocene sedimentation: A case study of the central Indian Ocean Basin. Deep Sea Research Part I: Oceanographic Research Papers, 40, 761–775.
Boulegue, J., & Mariotti, A. (1990). Carbonate cement and fluid circulation in intraplate deformation. In: Cochran, J.R., Stow, D.A.V., et al. (Eds.), Proceedings Ocean Drilling Program, Scientific Results. College Station, TX (Ocean Drilling Program), 116, 135–139
Bramlette, M. N. (1946). Monterey formation of California and origin of its siliceous rocks. U.S. Geological Survey Professional Paper, 212, 53
Cavalazzi, B., Westall, F., Cady, S. L., Barbieri, R., & Foucher, F. (2011). Potential fossil endoliths in vesicular pillow basalt, Coral Patch Seamount, eastern North Atlantic Ocean. Astrobiology, 11, 619–632.
Chamley, H. (1997). Clay mineral sedimentation in the ocean. In: Soils and Sediments (eds) Paquet H and Clauer N, Springer, 369
Chester, R., & Jickells, T.D. (2012). The Transport of Material to the Oceans: The Fluvial Pathway. In: Marine Geochemistry (Google eBook). John Wiley and Sons
Cockram, D. R., Haider, Z. & Roberts, G. J. (1969). The diffusion of “water” in soda-lime glass within and near the transformation range. Physics and Chemistry of Glasses, 10, 18–22.
Das, P., Iyer, S. D., & Kodagali, V. N. (2007). Morphological characteristics and emplacement mechanism of the seamounts in the Central Indian Ocean Basin. Tectonophysics, 443, 1–18.
Das, P., Iyer, S. D., Kodagali, V. N., & Krishna., K. S. . (2005). Distribution and origin of seamounts in the Central Indian Ocean Basin. Marine Geodesy, 28, 259–269.
Dekov, V. M., Cuadros, J., Kamenov, G. D., Weiss, D., Arnold, T., Basak, C., & Rochette, P. (2010). Metalliferous sediments from the H.M.S. Challenger voyage (1872–1876). Geochimica Et Cosmochimica Acta, 74, 5019–5038.
Furnes, H. (1978). Element mobility during palagonitization of a sub-glacial hyaloclastite in Iceland. Chemical Geology, 22, 249–264.
Gupta, S. M. (1988). Radiolarian zonation and volcanic ash-layers in two sediment cores from the Central Indian Basin. Journal of Palaeontological Society of India, 33, 59–71.
Gupta, S. M. (1996). Quantitative radiolarian assemblages in the surface sediments from the central Indian Ocean and their paleo monsoonal significances. Journal of Geological Society of India, 47, 339–354.
Gupta, S. M. (2009). Radiolarian abundance - a monsoon proxy responding to the Earth’s orbital forcing: Inferences on the mid-Brunhes climate shift. Earth Science, India, 2, 1–20.
Gupta, S. M., & Jauhari, P. (1994). Radiolarian abundance and geochemistry of the surface-sediments from the Central Indian Ocean Basin: Inferences to Antarctic Bottom water current. Current Science, 66, 659–653.
Honnorez, J. (1981). The aging of the oceanic crust. In C. Emiliani (Ed.), The Sea (Vol. 7, pp. 525–587). Wiley.
Huang, T. C., Fillon, R. H., Watkins, N. D., & Shaw, D. M. (1974). Volcanism and siliceous microfauna ‘diversity’ in the southwest Pacific during the Pleistocene period. Deep-Sea Research, 21, 377–384.
Iyer, S. D., Amonkar, A., & Das., P. (2018a). Genesis of Central Indian Ocean Basin Seamounts: Morphological, Petrological, Geochemical Evidence. International Journal of Earth Sciences. https://doi.org/10.1007/s00531-018-1612-z.
Iyer, S. D. (1991). Comparison of internal features and microchemistry of ferromanganese crusts from the Central Indian Basin. Geo-Marine Letters, 11, 44–50.
Iyer, S. D. (1999). Alteration of basaltic glasses from the Central Indian Ocean. Journal of Geological Society of India, 54, 609–620.
Iyer, S. D. (2005). Evidences for incipient hydrothermal event(s) in the Central Indian Basin: A review. Acta Geologica Sinica, 79, 77–86.
Iyer, S. D., Fernandes, G. Q., & Mahender, K. (2012). Coarse fraction components in a red-clay sediment core, Central Indian Ocean Basin: Their occurrence and significance. Journal of Indian Association of Sedimentologists, 31, 123–135.
Iyer, S. D., Gupta, S. M., Charan, S. N., & Mills, O. P. (1999b). Volcanogenic hydrothermal iron-rich materials from the southern part of the Central Indian Ocean Basin. Marine Geology, 158, 15–25.
Iyer, S. D., Mascarenhas-Pereira, M. B. L., & Nath, B. N. (2007a). Native aluminium (spherules and particles) in the Central Indian Basin sediments: Implications on the occurrence of hydrothermal events. Marine Geology, 240, 177–184.
Iyer, S. D., Mukhopadhyay, R., & Popko, D. C. (1999a). Ferrobasalts from the Central Indian Ocean Basin. Geo-Marine Letters, 18, 297–304.
Iyer, S. D., Pinto, S. M., & Sardar, A. A. (2018b). Characteristics and genesis of phillipsite grains in a sediment core from the Central Indian Ocean Basin. Indian Journal of Geo-Marine Sciences, 47, 1121–1131.
Iyer, S. D., Prasad, S. M., Gupta, S. M., & Charan, S. N. (1997b). Evidence for recent hydrothermal activity in the Central Indian Ocean Basin. Deep-Sea Research I, 44, 1167–1184.
Iyer, S. D., Prasad, S. M., Gupta, S. M., Charan, S. N., & Mukherjee, A. D. (1997a). Hydrovolcanic activity in the Central Indian Ocean Basin. Does nature mimic laboratory experiments? Journal of Volcanism and Geothermal Research, 78, 209–220.
Iyer, S. D., & Sudhakar, M. (1993). A new report on the occurrence of zeolites in the abyssal depths of the Central Indian Basin. Sedimentary Geology, 84, 169–178.
Iyer, S. D., Sudhakar, M., & Das, P. (2007b). Composition and genesis of zeolitic claystones from the Central Indian Ocean Basin. Acta Geologica Sinica, 81, 756–770.
Kalangutkar, N. G., Iyer, S. D., & Ilangovan, D. (2011). Physical properties, morphology, and petrological characteristics of pumices from the Central Indian Ocean Basin. Acta Geologica Sinica, 85, 826–839.
Kastner, M., 1981. Authigenic silicates in deep-sea sediments: formation and diagenesis. In: Emiliani, C. (Ed.), The Sea vol. 7, Wiley J. and Sons, New York 915–980
Kastner, M., & Stonecipher, S. A. (1978). Zeolites in pelagic sediments of the Atlantic, Pacific, and Indian Oceans. In L. B. Sand & F. A. Mumpton (Eds.), Natural Zeolites: Occurrences, Properties, and Uses (pp. 199–221). Pergamon.
Khadge, N. H. (1998). Physical properties of a core from the Central Indian Basin. Journal of Indian Geophysical Union, 2, 1–6.
Khadge, N. H., & Valsangkar, A. B. (2008). Geotechnical characteristics of siliceous sediments from the Central Indian Basin. Current Science, 12, 1570–1573.
Kolla, V., & Biscaye, P. E. (1973). Deep-sea zeolites: Variations in space and time in sediments of the Indian Ocean. Marine Geology, 15, 11–17.
Kurenkon, I.I. (1972). Vozdejstvijevulkanizmanarecnujir fauna. Proroda (Moscow), 46
LeBas, M. J., Le Maitre, R. W., Streckeisen, A., & Zanettin, B. (1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27, 745–750.
Lisitzin, A. P. (1996). Oceanic sedimentation, lithology & geochemistry (p. 400). American Geophysical Union.
Mascarenhas-Pereira, M. B. L., Nath, B. N., Borole, D. V., & Gupta, S. M. (2006). Nature, source and composition of volcanic ash in sediments from a fracture zone trace of Rodriguez Triple Junction in the Central Indian Basin. Marine Geology, 229, 79–90.
Matthews, D. H. (l971). Altered basalts from Swallow Bank, an abyssal hill in the N.E. Atlantic and from a nearby seamount. Phil. Trans. Roy. Soc. London, 268, 55l–572
Melson, W. G. (1973). Basaltic glasses from the Deep-sea Drilling Project. Chemical characteristics, composition of alteration products and fission track ‘ages’. EOS. Trans. Am. Geophysics Union, 54, 1011–1014.
Moore, J. G. (1966). Rate of palagonitization of submarine basalt adjacent to Hawaii. U.S. Geological Survey Prof Paper 550-D, 163–171
Morgenstein, M. (1967). Authigenic cementation of scoriaceous deep-sea sediments west of the Society Ridge. Sedimentology, 9, l05–ll8
Mukhopadhyay, R., Ghosh, A. K., & Iyer, S. D. (2018). The Indian Ocean nodule field: Geology & Resource Potential. 2nd edition Elsevier Amsterdam, 413
Mukhopadhyay, R., Iyer, S. D., & Ghosh, A. K. (2002). The Indian Ocean nodule field: Petrotectonic evolution and ferromanganese deposits. Earth-Science Reviews, 60, 67–130.
Nath, B. N., Borole, D. V., Aldahan, A., Patil, S. K., Mascarenhas-Pereira, M. B. L., Possnert, G., Ericsson, T., Ramaswamy, V., & Gupta, S. M. (2008). 210Pb, 230Th, & 10Be in Central Indian Basin seamount sediments: Signatures of degassing and hydrothermal alteration of recent origin. Geophysical Research Letters. https://doi.org/10.1029/2008GL033849
Nath, B. N., Rao, V. P. C., & Becker, K. P. (1989). Geochemical evidence of terrigenous influence in deep-sea sediments upto 8o S in the Central Indian Basin. Marine Geology, 87, 301–313.
Nath, B. N., Sijinkumar, A. V., Borole, D. V., Gupta, S. M., Mergulhao, L. P., Mascarenhas-Pereira, M. B. L., Ramaswamy, V., Guptha, M. V. S., Possnert, G., Aldahan, A., Khadge, N. H., & Sharma, R. (2013). Record of carbonate preservation & the Mid-Brunhes climatic shift from a seamount top with low sedimentation rates in the Central Indian Basin. Boreas, 42, 762–778.
Okada, T. (1936). Report of the Oceanographic observation in the neighboring seas of a new volcanic island, Iwozima Sinto. Journal of Oceanography Kobe
Pattan, J. N., & Parthiban, G. (2007). Do manganese nodules grow or dissolve after burial? Results from the Central Indian Ocean Basin. Journal of Asian Earth Sciences, 30, 696–705.
Pattan, J. N., Shyam, P. M., & Babu, E. V. S. S. K. (2010). Correlation of the oldest Toba Tuff to sediments in the central Indian Ocean Basin. Journal of Earth System Science, 119, 531–539.
Pattan, J. N., & Parthiban, G. (2011). Geochemistry of ferromanganese nodule-sediment pairs from Central Indian Ocean Basin. Journal of Asian Earth Science, 40, 569–580.
Pattan, J. N., Parthiban, G., Amonkar, A., Shaikh, S., & Sankar, S. J. (2017). Geochemical trace and ultra-trace elements and their association in ferromanganese nodules from Central Indian Ocean Basin. Marine Georesources and Geotechnology. https://doi.org/10.1080/1064119X.2017.1297878
Peterson, M. N. A., & Griffin, J. J. (1964). Volcanism and clay minerals in the southeastern Pacific. Journal of Marine Resources, 22, 13–21.
Prasad, M. S., Mahale, V. P., & Kodagali, V. N. (2007). New sites of Australasian microtektites in the central Indian Ocean: Implications for the location and size of source crater. Journal of Geophysical Research (oceans), 112, 1–11.
Rex, R. W. (l967). Authigenic silicates formed from basaltic glass by more than 60 million years contact with seawater, Sylvania Guyot, Marshall Island. In: Bailey. S.W. (Ed.), Clays and Clay Minerals, Proceedings of 15th Conf., 195–203
Rhodes, J. M. (1996). Geochemical stratigraphy of lava flows sampled by the Hawaiian scientific drilling project. Journal of Geophysical Research, 101, 729–746.
Riedel, W. R. (1959). Siliceous organic remains in pelagic sediments. In: Silica in sediments, H. A. Ireland (ed), Society of Economic Paleontology and Mineralogy, Sp. Publ. 7, 80–91
Riley, J. P., & Chester, R. (1971). Introduction to Marine Chemistry. Academic Press.
Sarma, N. S., Kiran, R., Rama Reddy, M., Iyer, S. D., Peketi, A., Borole, D. V., & Krishna, M. S. (2017). Hydrothermal alteration promotes humic acid formation in sediments: A case study of the Central Indian Ocean Basin. Journal of Geophysical Research (oceans), 123, 110–130.
Sarnthein, M. (1966). Sedimentologische profilrehenaus den Mitteltriadischen Karbonatgestern der Kalkalpannordlich und sudlich von Innsbruck. Bericht Des Naturwissen Chaflichme Dizinischen Vereins in Innsbruck, 54, 33–59.
Scarfe, C. M., & Smith, D. G. W. (1977). Secondary minerals in some basaltic pillow lavas: A microprobe study. American Journal of Sciences, 276, 480–501.
Sensarma, S., Gupta, S. M., Banerjee, R., & Mukhopadhyay, S. (2020). Change of lithofacies in marine sediment core from Quaternary to Pre-Quaternary: A case study from the Central Indian Ocean Basin. Journal of Earth System Sciences, 129, 54.
Singh, T., Kshirsagar, P. R., Das, A., Yadav, K., Mallik, S., Mascarenhas-Pereira, M. B. L., Thomas, T. R. A., Mamatha, S. S., Loka Bharathi, P. A., Khadge, N. H., Nath, B. N., Dhakephalkar, P. K., Iyer, S. D., Ray, D., Valsangkar, A. B., Garg, A., Prakash Babu, C., Waghole, R. J., Waghmare, S. S., … Paknikar, K. M. (2019). Implications of Microbial Thiosulfate Utilization in Red Clay Sediments of the Central Indian Basin: The Martin Analogy. Geochemistry, Geophysics, Geosystems, 20, 708–729. https://doi.org/10.1029/2018GC007640
Stroncik, N. A., & Schmincke, H. U. (2002). Palagonite – a review. International Journal of Earth Sciences, 91, 680–697.
Stroncik, N. A., & Schmincke, H.-U. (2001). The evolution of palagonite crystallisation, chemical changes, and element budget. Geochemical, Geophysics Geosystems, 2, 1–15.
Thompson, G. (1991). Metamorphic and hydrothermal processes: basalt seawater interactions. In P. A. Floyd (Ed.), Oceanic Basalts (pp. 148–173). Glasgow: Blackie and Sons.