Influence of light availability on growth, leaf morphology and plant architecture of beech (Fagus sylvatica L.), maple (Acer pseudoplatanus L.) and ash (Fraxinus excelsior L.) saplings

Any Mary Petriţan1,2, Burghard von Lüpke1, Ion Catalin Petriţan3,1
1Department of Silviculture and Forest Ecology of the Temperate Zones, Georg-August University Göttingen, Göttingen, Germany
2Department of Silviculture and Forest Ecology, Institute of Forest Research and Management, Brasov, Romania
3Department of Forest Management, Transilvania University Brasov, Brasov, Romania

Tóm tắt

In a field study, we measured saplings of beech, ash and maple growing in a fairly even-aged mixed-species thicket established by natural regeneration beneath a patchy shelterwood canopy with 3–60% of above canopy radiation reaching the saplings. Under low light conditions, maple and ash showed a slight lead in recent annual length increment compared with beech. With increasing light, ash and maple constantly gained superiority in length increment, whereas beech approached an asymptotic value above 35% light. A suite of architectural and leaf morphological attributes indicated a more pronounced ability of beech to adapt to shade than ash and maple. Beech displayed its leaves along the entire tree height (with a concentration in the middle crown), yielding a higher live crown ratio than ash and maple. It allocated biomass preferentially to radial growth which resulted in low height to diameter ratios, and expressed marked plagiotropic growth in shade indicating a horizontal light-foraging strategy. In addition, beech exhibited the highest specific leaf area, a greater total leaf area per unit tree height, a slightly greater leaf area index, and a greater plasticity to light in total leaf area. Ash and maple presented a “gap species” growth strategy, characterized by a marked and constant response in growth rates to increasing light and an inability to strongly reduce their growth rates in deep shade. In shade, they showed some plasticity in displaying most of their leaf area at the top of the crown to minimize self-shading and to enhance light interception. Through this, particularly, maple developed an “umbrella” like crown. These species-specific responses may be used for controlling the development of mixed-species regeneration in shelterwood systems.

Từ khóa


Tài liệu tham khảo

Ammer C (2003) Growth and biomass partitioning of Fagus sylvatica L. and Quercus robur L. seedlings in response to shading and small changes in the R/FR-ratio of radiation. Ann Sci 60:163–171. doi:10.1051/forest:2003009

Anderson DR, Burnham KP, Thompson WL (2000) Null hypothesis testing: problems, prevalence, and an alternative. J Wildl Manage 64:912–923. doi:10.2307/3803199

Bartelink HH (1997) Allometric relationships for biomass and leaf area of beech (Fagus sylvatica L). Ann For Sci 54:39–50. doi:10.1051/forest:19970104

Barthod S, Epron D (2005) Variations of construction cost associated to leaf area renewal in saplings of two co-occurring temperate tree species Acer platanoides L. and Fraxinus excelsior L. along a light gradient. Ann Sci 62:545–551. doi:10.1051/forest:2005047

Beaudet M, Messier C (1998) Growth and morphological responses of yellow birch, sugar maple, and beech seedlings growing under a natural light gradient. Can J Res 28:1007–1015. doi:10.1139/cjfr-28-7-1007

Bonosi L (2006) The influence of light and size on photosynthetic performance, light interception, biomass partitioning and tree arhitecture in open grown Acer pseudoplatanus, Fraxinus excelsior and Fagus sylvatica seedlings. Schriftenreihe Freiburger forstliche. Forschung :34

Canham CD (1988) Growth and canopy architecture of shade-tolerant tress: response to canopy gaps. Ecology 69:786–795. doi:10.2307/1941027

Canham CD, Finzi AC, Pacala SW, Burbank DH (1994) Causes and consequences of resource heterogeneity in forests: interspecific variation in light transmission by canopy trees. Can J Res 24:337–349. doi:10.1139/x94-046

Chan SS, Radosevich SR, Grotta AT (2002) Effects of contrasting light and soil moisture availability on the growth and biomass allocation of Douglas-fir and red alder. Can J Res 33:106–117. doi:10.1139/x02-148

Chen HYH, Klinka K, Kayahara J (1996) Effects of light on growth, crown architecture, and specific leaf area for naturally established Pinus contorta var. latifolia and Pseudotsuga menziessi var. glauca saplings. Can J Res 26:1149–1157. doi:10.1139/x26-128

Chen HYH, Klinka K (1998) Survival, growth, and allometry of planted Larix occidentalis seedlings in relation to light availability. For Ecol Manage 106:169–179

Claveau Y, Messier C, Gomeau PG, Coates KD (2002) Growth and crown morphological responses of boreal conifer seedlings and saplings with contrasting shade tolerance to a gradient of light and height. Can J Res 32:458–468. doi:10.1139/x01-220

Delagranges S, Messier C, Lechowicz MJ, Dizengremel P (2004) Physiological, morphological and allocational plasticity in understory deciduous trees: importance of plant size and light availability. Tree Physiol 24:775–784

DeLucia EH, Sipe TW, Herrick J, Maherali H (1998) Sapling biomass allocation and growth in the understory of a deciduous hardwood forest. Am J Bot 85:955–963. doi:10.2307/2446362

Faust H (1963) Waldbauliche Untersuchungen am Bergahorn. Diss Forstl Fak Univ Göttingen

Gratzer G, Darabant A, Chhetri PB, Rai PB, Eckmüllner O (2004) Interspecific variation in the response of growth, crown morphology, and survivorship to light of six tree species in the conifer belt of the Bhutan Himalayas. Can J Res 34:1093–1107. doi:10.1139/x03-281

Horn A (2002) Konkurrenz zwischen natürlich verjüngten Eschen und Buchen in Bestandeslücken: Wachstum, Feinwurzelverteilung und ökophysiologische Reaktion auf Austrocknung. Ber. Forschungszentrum Waldökosysteme Univ. Göttingen A 177

Huss J, Stephani A (1978) Lassen sich ankommende Buchennaturverjüngungen durch frühzeitige Auflichtung, durch Düngung oder Unkrautbekämpfung rascher aus der Gefahrenzone bringen? Allg Forst u J Ztg 149:133–145

Kimmins JP (1997) Forest ecology—a foundation for sustainable management. Prentice Hall, Upper Saddle River, p 596S

King DA (1991) Correlations between biomass allocation, relative growth rate and light environment in tropical forest saplings. Funct Ecol 5:485–492. doi:10.2307/2389630

King DA (2003) Allocation of above-ground growth is related to light in temperate deciduous saplings. Funct Ecol 17:482–488. doi:10.1046/j.1365-2435.2003.00759.x

Klooster SHJT, Thomas EJP, Sterck FJ (2007) Explaining interspecifc differences in sapling growth and shade tolerance in temperate forests. Ecology 95:1250–1260. doi:10.1111/j.1365-2745.2007.01299.x

Kunstler G, Curt T, Bouchaud M, Lepart J (2005) Growth, mortality, and morphological response of European beech and downy oak along a light gradient in sub-Mediterranean forest. Can J Res 35:1657–1668. doi:10.1139/x05-097

LI-COR, Inc. (1987) Li-3100 area meter. Instruction manual. Lincoln, Nebraska

von Lüpke B (1989) Die Esche-wertvolle Baumart im Buchenmischwald. AFZ 38–39:1040–1042

von Lüpke B (2005) Canopy management, plant quality and harvesting regime. In: Oleskog G, Löf M (eds) The ecological and silvicultural bases for underplanting beech (Fagus sylvatica L.) below Norway spruce shelterwood (Picea abies L. Karst.). Schriften a. d. Forstl. Fakultät d. Universität Göttingen u.d. Niedersächsischen Forstl. Versuchsanstalt, Bd. 139. J. D. Sauerländer’s Verlag, Frankfurt am Main, pp 59–73

von Lüpke B, Hauskeller-Bullerjahn K (2004) Beitrag zur Modellierung der Jungwuchsentwicklung am Beispiel von Traubeneichen-Buchen-Mischverjüngungen. Allg Forst u J Ztg 175:61–69

Messier C, Doucet R, Ruel JC, Claveau Y, Kelly C, Lechowicz MJ (1999) Functional cology of advance regeneration in relation to light in boreal forests. Can J Res 29:812–823. doi:10.1139/cjfr-29-6-812

Messier C, Nikinmaa E (2000) Effects of light availability and sapling size on the growth, biomas allocation, and crown morphology of understory sugar maple, yellow birch, and beech. Ecoscience 7:345–356

Minotta G, Pinzauti S (1996) Effects of light and soil fertility on growth, leaf chlorophyll content and nutrient use efficiency of beech (Fagus sylvatica L.) seedlings. For Ecol Manage 86:61–71

Niinemets Ü (1996) Changes in foliage distribution with tree size and relative irradiance: differences between the saplings of Acer platanoides and Quercus robur. Ecol Res 11:269–281. doi:10.1007/BF02347784

Niinemets Ü, Kull O (1998) Stoichiometry of foliar carbon constituents varies along light gradients in temperate woody canopies: implications for foliage morphological plasticity. Tree Physiol 18:467–479

Nüsslein S (1995) Struktur und Wachstumsdynamik jüngerer Buchen-Edellaubholz-Mischbestände in Nordbayern. Forstl. Forschungsber. München 151

Oliver CD, Larson BC (1996) Forest stand dynamics. Wiley, New York

Pacala SW, Canham CD, Silander JA, Kobe RK (1994) Sapling growth as a function of resources in a north temperate forest. Can J Res 24:2172–2183. doi:10.1139/x94-280

Paquette A, Bouchard A, Cogliastro A (2007) Morphological plasticity in seedlings of three decidous species under shelterwood under-planting management does not correspond to shade tolerance ranks. For Ecol Manage 241:278–287

Perry MA, Mitchell RK, Zutter BR, Glover GR, Gjerstad DH (1993) Competitive responses of loblolly pine to gradients in loblolly pine, sweet gum and broomsedge densities. Can J Res 23:2049–2058. doi:10.1139/x93-256

Petriţan AM, von Lüpke B, Petriţan IC (2007) Effects of shade on growth and mortality of maple (Acer pseudoplatanus), ash (Fraxinus excelsior) and beech (Fagus sylvatica) saplings. Forestry 80:397–412. doi:10.1093/forestry/cpm030

Pommerening A (2002) Neue forstpolitische Rahmenbedingungen als Herausforderung für die Waldbau-Forschung in Wales. AFZ/DerWald 57:90–94

Regents Instruments Inc Sainte-Foy, Québec (2003) WinScanopy for hemispherical image analysis. http://www.regent-instruments.com

Röhrig E (1966) Mischbestände aus Edellaubbaumarten und Buche. Forst Holz 21:59–64

Röhrig E, Bartsch N, Lüpke BV (2006) Waldbau auf ökologischer Grundlage. Eugen Ulmer (zugleich UTB 8310), Stuttgart

Runkle JR, Yetter TC (1987) Treefalls revisited: gap dynamics in the Southern Appalachians. Ecology 68:417–424. doi:10.2307/1939273

Schmidt W (1996) Zur Entwicklung der Verjüngung in zwei Femellücken eines Kalkbuchenwaldes. Forst Holz 51:201–205

Schmitt HP, Mertens B, von Lüpke B (1995) Buchenvoranbau im Stadtwald Meschede. Allg Forstz 50:1071–1075

Schütz JP (1999) Close-to-nature silviculture: is this concept compatible with species diversity. Inst chart foresters 72:359–366

Stancioiu PT, O’Hara KL (2006a) Regeneration growth in different light environments of mixed species, multiaged, mountainous forests of Romania. J For Res 125:151–162

Stancioiu PT, O’Hara KL (2006b) Morphological plasticity of regeneration subject to different levels of canopy cover in mixed-species, multiaged forests of the Romanian Carpathians. Trees (Berl) 20:196–209. doi:10.1007/s00468-005-0026-2

StatSoft, Inc. (2005) STATISTICA für Windows [Software-System für Datenanalyse] Version 7.1. http://www.statsoft.com

Suner A, Röhrig E (1980) Die Entwicklung der Buchenverjüngung in Abhängigkeit von der Auflichtung des Altbestandes. Forstarchiv 51:145–149

Voß S (2005) Biomasseproduktion und morphologische Plastizität junger Eichen bei Konkurrenzbelastung durch unterschiedlich dichte Altholzschirme. Berichte des Forschungszentrums Waldökosysteme der Universität Göttingen, Reihe A, Band 194

Wagenhoff A (1974) Edellaubholzanbau in Niedersachsen. Allg. Forstzeitschrift, pp 997–998

Wagner S (1999) Ökologische Untersuchungen zur Initialphase der Naturverjüngung in Eschen-Buchen-Mischbeständen. Schriften Forstl Fakultät Univ Göttingen, Nieders. Forstl Versuchsanstalt 129 J.D. Sauerländer`s Verlag, Frankfurt a. M

Walters MB, Kruger EL, Reich PB (1993) Growth, biomass distribution and CO2 exchange of northern hardwood seedlings in high and low light: relationships with successional status and shade tolerance. Oecologia 94:7–16. doi:10.1007/BF00317294

Walters MB, Reich PB (1996) Are shade tolerance, survival, and growth linked? Low light and nitrogen effects on hardwood seedlings. Ecology 77:841–853. doi:10.2307/2265505

Züge J (1986) Wachstumsdynamik eines Buchenwaldes auf Kalkgestein - mit besonderer Berücksichtigung der interspezifischen Konkurrenzverhältnisse -. Diss. Forstwiss. Fachbereich d. Uni. Göttingen, Göttingen: 213 S