Influence of hydrogen import prices on hydropower systems in climate-neutral Europe
Springer Science and Business Media LLC - Trang 1-39 - 2023
Tóm tắt
While climate and energy policy targets require fundamental changes and expansions in the energy infrastructure, hydropower systems across Europe remain essential for low-carbon energy systems. With renewable fuel import prices being subject to large uncertainties, this work aims to substantiate the relationship between these fuel import prices and multireservoir hydropower systems in a climate-neutral energy system. To that end, three green hydrogen import price scenarios are combined with two aggregated modelling approaches for pan-European hydropower assets. Using the integrated energy system model SCOPE SD, the analysis shows that import prices for green hydrogen have a significant impact on European electricity generation (+ 595 GW
$$_\text {el}$$
and + 650 TWh
$$_\text {el}$$
/yr), domestic hydrogen production (+ 396 TWh
$$_\text {th}$$
/yr), and water values of European hydropower assets (+ 33 % of average value in Norway). The results further indicate that the different aggregation methods only have a minor impact, suggesting that the computationally more efficient approach with up to 90% reductions in solution time provides suitable approximations of hydropower generation and flexibility in future analyses.
Tài liệu tham khảo
European Commission: A European Green Deal—Striving to be the first climate-neutral continent (2021). https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en
European Commission: Energy and the Green Deal (2021). https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal/energy-and-green-deal_en
Böttger, D., Härtel, P.: On wholesale electricity prices and market values in a carbon-neutral energy system. Energy Econ. 106, 105709 (2022). https://doi.org/10.1016/j.eneco.2021.105709
Härtel, P., Korpås, M.: Aggregation Methods for Modelling Hydropower and Its Implications for a Highly Decarbonised Energy System in Europe. Energies 10(11), 1841 (2017). https://doi.org/10.3390/en10111841
Härtel, P.: Offshore Grids in Low-Carbon Energy Systems: Long-Term Transmission Expansion Planning in Energy Systems with Cross-Sectoral Integration using Decomposition Algorithms and Aggregation Methods for Large-Scale Optimisation Problems. PhD thesis, University of Kassel (2021). https://publica.fraunhofer.de/handle/publica/283522
Arvanitidits, N.V., Rosing, J.: Composite Representation of a Multireservoir Hydroelectric Power System. IEEE Trans. Power Appar. Syst. PAS–89(2), 319–326 (1970). https://doi.org/10.1109/TPAS.1970.292595
Blom, E., Söder, L., Risberg, D.: Performance of multi-scenario equivalent hydropower models. Electr. Power Syst. Res. 187, 106486 (2020). https://doi.org/10.1016/j.epsr.2020.106486
Blom, E., Söder, L.: Computation of Multi-Scenario Hydropower Equivalents Using Particle Swarm Optimization. In: 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I &CPS Europe), pp. 1–6 (2020). https://doi.org/10.1109/EEEIC/ICPSEurope49358.2020.9160649
Gallego-Castillo, C., Victoria, M.: Improving Energy Transition Analysis Tool through Hydropower Statistical Modelling. Energies 14(1), 98 (2021). https://doi.org/10.3390/en14010098
Blom, E., Söder, L.: Accurate model reduction of large hydropower systems with associated adaptive inflow. Renew. Energy 200, 1059–1067 (2022). https://doi.org/10.1016/j.renene.2022.09.060
Blom, E., Söder, L.: Comparison of Different Computational Methods and Formulations for Hydropower Equivalents. In: 2022 IEEE 7th International Energy Conference (ENERGYCON), pp. 1–6 (2022). https://doi.org/10.1109/ENERGYCON53164.2022.9830320
Schlott, M., Kies, A., Brown, T., Schramm, S., Greiner, M.: The impact of climate change on a cost-optimal highly renewable European electricity network. Appl. Energy 230, 1645–1659 (2018). https://doi.org/10.1016/j.apenergy.2018.09.084
Gøtske, E.K., Victoria, M.: Future operation of hydropower in Europe under high renewable penetration and climate change. iScience 24(9), 102999 (2021). https://doi.org/10.1016/j.isci.2021.102999
Wasti, A., Ray, P., Wi, S., Folch, C., Ubierna, M., Karki, P.: Climate change and the hydropower sector: A global review. WIREs Clim. Change (2022). https://doi.org/10.1002/wcc.757
Seck, G.S., Hache, E., Sabathier, J., Guedes, F., Reigstad, G.A., Straus, J., Wolfgang, O., Ouassou, J.A., Askeland, M., Hjorth, I., Skjelbred, H.I., Andersson, L.E., Douguet, S., Villavicencio, M., Trüby, J., Brauer, J., Cabot, C.: Hydrogen and the decarbonization of the energy system in Europe in 2050: A detailed model-based analysis. Renew. Sustain. Energy Rev. 167, 112779 (2022). https://doi.org/10.1016/j.rser.2022.112779
Caglayan, D.G., Heinrichs, H.U., Robinius, M., Stolten, D.: Robust design of a future 100% renewable European energy supply system with hydrogen infrastructure. Int. J. Hydrogen Energy 46(57), 29376–29390 (2021). https://doi.org/10.1016/j.ijhydene.2020.12.197
Sasanpour, S., Cao, K.-K., Gils, H.C., Jochem, P.: Strategic policy targets and the contribution of hydrogen in a 100% renewable European power system. Energy Rep. 7, 4595–4608 (2021). https://doi.org/10.1016/j.egyr.2021.07.005
Öberg, S., Odenberger, M., Johnsson, F.: The cost dynamics of hydrogen supply in future energy systems—A techno-economic study. Appl. Energy 328, 120233 (2022). https://doi.org/10.1016/j.apenergy.2022.120233
Frischmuth, F., Härtel, P.: Hydrogen sourcing strategies and cross-sectoral flexibility trade-offs in net-neutral energy scenarios for Europe. Energy 238, 121598 (2022). https://doi.org/10.1016/j.energy.2021.121598
Peterssen, F., Schlemminger, M., Lohr, C., Niepelt, R., Bensmann, A., Hanke-Rauschenbach, R., Brendel, R.: Hydrogen supply scenarios for a climate neutral energy system in Germany. Int. J. Hydrogen Energy 47(28), 13515–13523 (2022). https://doi.org/10.1016/j.ijhydene.2022.02.098
Espegren, K., Damman, S., Pisciella, P., Graabak, I., Tomasgard, A.: The role of hydrogen in the transition from a petroleum economy to a low-carbon society. Int. J. Hydrogen Energy 46(45), 23125–23138 (2021). https://doi.org/10.1016/j.ijhydene.2021.04.143
Lux, B., Deac, G., Kiefer, C.P., Kleinschmitt, C., Bernath, C., Franke, K., Pfluger, B., Willemsen, S., Sensfuß, F.: The role of hydrogen in a greenhouse gas-neutral energy supply system in Germany. Energy Convers. Manage. 270, 116188 (2022). https://doi.org/10.1016/j.enconman.2022.116188
Tarnay, D.: Hydrogen production at hydro-power plants. Int. J. Hydrogen Energy 10(9), 577–584 (1985). https://doi.org/10.1016/0360-3199(85)90032-1
Jovan, D.J., Dolanc, G., Pregelj, B.: Cogeneration of green hydrogen in a cascade hydropower plant. Energy Convers. Manag. X 10, 100081 (2021). https://doi.org/10.1016/j.ecmx.2021.100081
Zhou, A., Zhou, W., Manandhar, P.: A Study on the Prospect of Hydropower to Hydrogen in Nepal. Asian Dev. Bank (2020). https://doi.org/10.22617/WPS200218-2
Kakoulaki, G., Kougias, I., Taylor, N., Dolci, F., Moya, J., Jäger-Waldau, A.: Green Hydrogen in Europe—A regional assessment: Substituting existing production with electrolysis powered by renewables. Energy Convers. Manage. 228, 113649 (2021). https://doi.org/10.1016/j.enconman.2020.113649
Böttger, D., Jentsch, M., Trost, T., Gerhardt, N., von Bonin, M., Eschmann, J.: Cost-Optimal Market Share of Electric Mobility Within the Energy System in a Decarbonisation Scenario. In: 2018 15th International Conference on the European Energy Market (EEM), pp. 1–5 (2018). https://doi.org/10.1109/EEM.2018.8469846
Härtel, P., Ghosh, D.: Modelling Heat Pump Systems in Low-Carbon Energy Systems With Significant Cross-Sectoral Integration. IEEE Trans. Power Syst. 37(4), 3259–3273 (2020). https://doi.org/10.1109/TPWRS.2020.3023474
Härtel, P., Korpås, M.: Demystifying market clearing and price-setting effects in low-carbon energy systems. Energy Econ. 93, 105051 (2021). https://doi.org/10.1016/j.eneco.2020.105051
Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L., Healy, S.B., Hersbach, H., Hólm, E.V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A.P., Monge-Sanz, B.M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011). https://doi.org/10.1002/qj.828
ECMWF: ERA Interim, Daily, Reading, United Kingdom (2015). https://confluence.ecmwf.int/display/DAC/Decommissioning+of+ECMWF+Public+Datasets+Service
Turgeon, A.: Optimal operation of multireservoir power systems with stochastic inflows. Water Resour. Res. 16(2), 275–283 (1980). https://doi.org/10.1029/WR016i002p00275
ENTSO-E and ENTSOG: TYNDP 2022 Scenario Building Guidelines (2021). https://www.entsog.eu/sites/default/files/2021-10/entsos_TYNDP_2022_Scenario_Building_Guidelines_211007_1.pdf
ENTSO-E and ENTSOG: TYNDP 2020 Scenario Report (2020). https://2020.entsos-tyndp-scenarios.eu/
Statnett: Langsiktig markedsanalyse—Norden og Europa 2020-2050 (2020). https://www.statnett.no/globalassets/for-aktorer-i-kraftsystemet/planer-og-analyser/lma/langsiktig-markedsanalyse-norden-og-europa-2020-50_revidert.pdf
European Commission: EU Reference Scenario 2016—Energy, transport and GHG emissions: trends to 2050 (2016). https://op.europa.eu/en/publication-detail/-/publication/aed45f8e-63e3-47fb-9440-a0a14370f243
ENTSO-E: TYNDP 2018 Scenario Report (2018). https://tyndp.entsoe.eu/tyndp2018/scenario-report/
S&P Global Market Intelligence: World Electric Power Plants Database (2016). https://www.spglobal.com/marketintelligence/en/campaigns/energy
NVE: Langsiktig kraftmarkedsanalyse 2020–2040 (2020). https://www.nve.no/energi/analyser-og-statistikk/langsiktig-kraftmarkedsanalyse/
European Environment Agency: CORINE Land Cover (2018). https://www.eea.europa.eu/publications/COR0-landcover
Energinet, Fingrid, Statnett, Svenska Kraftnät: Nordic Grid Development Perspective 2021 (2021). https://www.statnett.no/globalassets/for-aktorer-i-kraftsystemet/planer-og-analyser/nordic-grid-development-perspective-2021.pdf
ENTSO-E: Transparency Platform (2019). https://transparency.entsoe.eu/
Fraunhofer IEE: Global PtX Atlas (2021). https://maps.iee.fraunhofer.de/ptx-atlas/
Pfennig, M., Böttger, D., Häckner, B., Geiger, D., Zink, C., Bisevic, A., Jansen, L.: Global GIS-based potential analysis and cost assessment of Power-to-X fuels in 2050. Appl. Energy (2022). https://doi.org/10.48550/arXiv.2208.14887
Schmitz, R., Naversen, C.Ø., Härtel, P.: Case study result data set for Energy Systems (submitted) article: “Influence of hydrogen import prices on hydropower systems in climate-neutral Europe”. Zenodo (2023). https://doi.org/10.5281/zenodo.7692180
openENTRANCE H2020 project: Open Modelling Platform (2023). https://openentrance.eu/open-modelling-platform/open-modelling-platform-read-more/
Frischmuth, F., Schmitz, R., Härtel, P.: IMAGINE—Market-based multi-period planning of European hydrogen and natural gas infrastructure. In: 2022 18th International Conference on the European Energy Market (EEM), pp. 1–11 (2022). https://doi.org/10.1109/EEM54602.2022.9921154