Influence of growth parameters on the morphology of GaAs nanowires grown on Si (111) by molecular beam epitaxy
Tài liệu tham khảo
Royo, 2017, A review on III-V core-multishell nanowires: growth, properties, and applications, J. Phys. D Appl. Phys., 50, 10.1088/1361-6463/aa5d8e
Gluschke, 2018, Achieving short high-quality gate-all-around structures for horizontal nanowire field-effect transistors, Nanotechnology, 30, 6
Chen, 2019, Thermoelectrics of nanowires, Chem. Rev., 119, 9260, 10.1021/acs.chemrev.8b00627
Bjergfelt, 2019, Superconducting vanadium/indium-arsenide hybrid nanowires, Nanotechnology, 30, 29, 10.1088/1361-6528/ab15fc
Bae, 2014, Non-lithographic growth of core-shell GaAs nanowires on Si for optoelectronic applications, Cryst. Growth Des., 14, 1510, 10.1021/cg401520q
Peng, 2015, Single nanowire photoconductive terahertz detectors, Nano Lett., 15, 206, 10.1021/nl5033843
LaPierre, 2017, A review of III–V nanowire infrared photodetectors and sensors, J. Phys. D Appl. Phys., 50
Wu, 2018, Optimization of GaAs nanowire pin junction array solar cells by using AlGaAs/GaAs heterojunctions, Nanoscale. Res. Letts., 13, 126, 10.1186/s11671-018-2503-8
Alanis, 2019, Optical study of p-doping in GaAs nanowires for low-threshold and high-yield lasing, Nano Lett., 19, 362, 10.1021/acs.nanolett.8b04048
Bracker, 2000, Surface reconstruction phase diagrams for InAs, AlSb, and GaSb, J. Cryst. Growth, 220, 384, 10.1016/S0022-0248(00)00871-X
Arpapay, 2020, Convex-like GaAs nanowires grown on Si (111) substrates, Mater. Sci. Semicond. Process., 107, 10.1016/j.mssp.2019.104817
Rieger, 2012, Ga-assisted MBE growth of GaAs nanowires using thin HSQ layer, J. Cryst. Growth, 353, 39, 10.1016/j.jcrysgro.2012.05.006
Detz, 2015, Nucleation of Ga droplets on Si and SiO x surface, Nanotechnology, 26
Matteini, 2015, Tailoring the diameter and density of self-catalyzed GaAs nanowires on silicon, Nanotechnology, 26, 10.1088/0957-4484/26/10/105603
Bastiman, 2016, Growth map for Ga-assisted growth of GaAs nanowires on Si(111) substrates by molecular beam epitaxy, Nanotechnology, 27, 10.1088/0957-4484/27/9/095601
Yu, 2012, Evidence for structural phase transitions induced by the triple phase line shift in self-catalyzed GaAs nanowires, Nano Lett., 12, 5436, 10.1021/nl303323t
Colombo, 2008, Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy, Phys. Rev. B, 77
Kasap, 2007, 296
Giang, 2013, Intrinsic limits governing MBE growth of Ga-assisted GaAs nanowires on Si(111), J. Cryst. Growth, 364, 118, 10.1016/j.jcrysgro.2012.11.032
Paek, 2009, Catalyst free MBE-VLS growth of GaAs nanowires on (111) Si substrate, Phys. Status Solidi C, 6, 1436, 10.1002/pssc.200881520
Rudolph, 2011, Direct observation of a noncatalytic growth regime for GaAs nanowires, Nano Lett., 11, 3848, 10.1021/nl2019382
Küpers, 2018, Diameter evolution of selective area grown Ga-assisted GaAs nanowires, Nano Research, 11, 2885, 10.1007/s12274-018-1984-1
Glas, 2007, Why does Wurtzite form in nanowires of III-V Zinc blende semiconductors?, Phys. Rev. Lett., 99, 10.1103/PhysRevLett.99.146101
Cirlin, 2010, Self-catalyzed, pure zincblende GaAs nanowires grown on Si(111) by molecular beam epitaxy, Phys. Rev. B, 82
Bauer, 2010, Position controlled self-catalyzed growth of GaAs nanowires by molecular beam epitaxy, Nanotechnology, 21