Influence of growth parameters on the morphology of GaAs nanowires grown on Si (111) by molecular beam epitaxy

Materials Science in Semiconductor Processing - Tập 111 - Trang 104990 - 2020
Burcu Arpapay1, Özgür Duygulu2, Uğur Serincan1
1Nanoboyut Research Laboratory, Department of Physics, Faculty of Science, Eskisehir Technical University, 26555, Eskisehir, Turkey
2TUBITAK Marmara Research Center, Materials Institute, Gebze Kocaeli, Turkey

Tài liệu tham khảo

Royo, 2017, A review on III-V core-multishell nanowires: growth, properties, and applications, J. Phys. D Appl. Phys., 50, 10.1088/1361-6463/aa5d8e Gluschke, 2018, Achieving short high-quality gate-all-around structures for horizontal nanowire field-effect transistors, Nanotechnology, 30, 6 Chen, 2019, Thermoelectrics of nanowires, Chem. Rev., 119, 9260, 10.1021/acs.chemrev.8b00627 Bjergfelt, 2019, Superconducting vanadium/indium-arsenide hybrid nanowires, Nanotechnology, 30, 29, 10.1088/1361-6528/ab15fc Bae, 2014, Non-lithographic growth of core-shell GaAs nanowires on Si for optoelectronic applications, Cryst. Growth Des., 14, 1510, 10.1021/cg401520q Peng, 2015, Single nanowire photoconductive terahertz detectors, Nano Lett., 15, 206, 10.1021/nl5033843 LaPierre, 2017, A review of III–V nanowire infrared photodetectors and sensors, J. Phys. D Appl. Phys., 50 Wu, 2018, Optimization of GaAs nanowire pin junction array solar cells by using AlGaAs/GaAs heterojunctions, Nanoscale. Res. Letts., 13, 126, 10.1186/s11671-018-2503-8 Alanis, 2019, Optical study of p-doping in GaAs nanowires for low-threshold and high-yield lasing, Nano Lett., 19, 362, 10.1021/acs.nanolett.8b04048 Bracker, 2000, Surface reconstruction phase diagrams for InAs, AlSb, and GaSb, J. Cryst. Growth, 220, 384, 10.1016/S0022-0248(00)00871-X Arpapay, 2020, Convex-like GaAs nanowires grown on Si (111) substrates, Mater. Sci. Semicond. Process., 107, 10.1016/j.mssp.2019.104817 Rieger, 2012, Ga-assisted MBE growth of GaAs nanowires using thin HSQ layer, J. Cryst. Growth, 353, 39, 10.1016/j.jcrysgro.2012.05.006 Detz, 2015, Nucleation of Ga droplets on Si and SiO x surface, Nanotechnology, 26 Matteini, 2015, Tailoring the diameter and density of self-catalyzed GaAs nanowires on silicon, Nanotechnology, 26, 10.1088/0957-4484/26/10/105603 Bastiman, 2016, Growth map for Ga-assisted growth of GaAs nanowires on Si(111) substrates by molecular beam epitaxy, Nanotechnology, 27, 10.1088/0957-4484/27/9/095601 Yu, 2012, Evidence for structural phase transitions induced by the triple phase line shift in self-catalyzed GaAs nanowires, Nano Lett., 12, 5436, 10.1021/nl303323t Colombo, 2008, Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy, Phys. Rev. B, 77 Kasap, 2007, 296 Giang, 2013, Intrinsic limits governing MBE growth of Ga-assisted GaAs nanowires on Si(111), J. Cryst. Growth, 364, 118, 10.1016/j.jcrysgro.2012.11.032 Paek, 2009, Catalyst free MBE-VLS growth of GaAs nanowires on (111) Si substrate, Phys. Status Solidi C, 6, 1436, 10.1002/pssc.200881520 Rudolph, 2011, Direct observation of a noncatalytic growth regime for GaAs nanowires, Nano Lett., 11, 3848, 10.1021/nl2019382 Küpers, 2018, Diameter evolution of selective area grown Ga-assisted GaAs nanowires, Nano Research, 11, 2885, 10.1007/s12274-018-1984-1 Glas, 2007, Why does Wurtzite form in nanowires of III-V Zinc blende semiconductors?, Phys. Rev. Lett., 99, 10.1103/PhysRevLett.99.146101 Cirlin, 2010, Self-catalyzed, pure zincblende GaAs nanowires grown on Si(111) by molecular beam epitaxy, Phys. Rev. B, 82 Bauer, 2010, Position controlled self-catalyzed growth of GaAs nanowires by molecular beam epitaxy, Nanotechnology, 21