Influence of graphene oxide and carbon nanotubes on the fatigue properties of silica/styrene-butadiene rubber composites under uniaxial and multiaxial cyclic loading

International Journal of Fatigue - Tập 131 - Trang 105388 - 2020
Zongchao Xu1,2, Stephen Jerrams3, Hao Guo1,2, Yanfen Zhou4, Liang Jiang4, Yangyang Gao1,2, Liqun Zhang1,2, Li Liu1,2, Shipeng Wen1,2
1State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
2Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing, 100029, China
3Centre for Elastomer Research, Technological University Dublin, Dublin, Ireland
4School of Textile and Garment, Qingdao University, Qingdao 266071, China

Tài liệu tham khảo

Peddini, 2015, Nanocomposites from styrene–butadiene rubber (SBR) and multiwall carbon nanotubes (MWCNT) part 2: Mechanical properties, Polymer, 56, 443, 10.1016/j.polymer.2014.11.006 Dong, 2016, Effects of hybrid filler networks of carbon nanotubes and carbon black on fracture resistance of styrene-butadiene rubber composites, Polym Eng Sci, 56, 1425, 10.1002/pen.24379 Legorju-jago, 2002, Fatigue initiation and propagation in natural and synthetic rubbers, Int J Fatigue, 24, 85, 10.1016/S0142-1123(01)00062-7 Saintier, 2006, Crack initiation and propagation under multiaxial fatigue in a natural rubber, Int J Fatigue, 28, 61, 10.1016/j.ijfatigue.2005.03.006 Tee, 2018, Recent advances on fatigue of rubber after the literature survey by Mars and Fatemi in 2002 and 2004, Int J Fatigue, 110, 115, 10.1016/j.ijfatigue.2018.01.007 Li, 2015, Toughening rubbers with a hybrid filler network of graphene and carbon nanotubes, J Mater Chem A, 3, 22385, 10.1039/C5TA05836H Dong, 2015, Synergistic effects of carbon nanotubes and carbon black on the fracture and fatigue resistance of natural rubber composites, J Appl Polym Sci, 132, 10.1002/app.42075 Rooj, 2013, Influence of “expanded clay” on the microstructure and fatigue crack growth behavior of carbon black filled NR composites, Compos Sci Technol, 76, 61, 10.1016/j.compscitech.2012.12.020 Klüppel, 2009, The role of filler networking in fatigue crack propagation of elastomers under high-severity conditions, Macromol Mater Eng, 294, 130, 10.1002/mame.200800263 Le Cam, 2004, Mechanism of fatigue crack growth in carbon black filled natural rubber, Macromolecules, 37, 5011, 10.1021/ma0495386 Dong, 2014, Fracture and fatigue of silica/carbon black/natural rubber composites, Polym Test, 38, 40, 10.1016/j.polymertesting.2014.06.004 Harbour, 2008, Fatigue life analysis and predictions for NR and SBR under variable amplitude and multiaxial loading conditions, Int J Fatigue, 30, 1231, 10.1016/j.ijfatigue.2007.08.015 Kim, 2005, A study on the material properties and fatigue life of natural rubber with different carbon blacks, Int J Fatigue, 27, 263, 10.1016/j.ijfatigue.2004.07.002 Zheng, 2018, Chemical and physical interaction between silane coupling agent with long arms and silica and its effect on silica/natural rubber composites, Polymer, 135, 200, 10.1016/j.polymer.2017.12.010 Huneau, 2016, Fatigue crack initiation in a carbon black-filled natural rubber, Rubber Chem Technol, 89, 126, 10.5254/rct.15.84809 Xie, 2017, New evidence disclosed for the engineered strong interfacial interaction of graphene/rubber nanocomposites, Polymer, 118, 30, 10.1016/j.polymer.2017.04.056 Dong, 2015, Preparation, fracture, and fatigue of exfoliated graphene oxide/natural rubber composites, RSC Adv, 5, 17140, 10.1039/C4RA17051B Zhou, 2019, Crack resistance improvement of rubber blend by a filler network of graphene, J Appl Polym Sci, 136, 47278, 10.1002/app.47278 Dong, 2017, Influences of different dimensional carbon-based nanofillers on fracture and fatigue resistance of natural rubber composites, Polym Test, 63, 281, 10.1016/j.polymertesting.2017.08.035 Hummers, 1958, Preparation of graphitic oxide, J Am Chem Soc, 80, 1339, 10.1021/ja01539a017 Mao, 2013, High performance graphene oxide based rubber composites, Sci Rep, 3, 2508, 10.1038/srep02508 Kaang, 2006, A test method to measure fatigue crack growth rate of rubbery materials, Polym Test, 25, 347, 10.1016/j.polymertesting.2005.12.005 Zhou, 2014, Fatigue life prediction of magnetorheological elastomers subjected to dynamic equi-biaxial cyclic loading, Mater Chem Phys, 146, 487, 10.1016/j.matchemphys.2014.03.059 Zhou, 2013, Multi-axial fatigue in magnetorheological elastomers using bubble inflation, Mater Des, 50, 68, 10.1016/j.matdes.2013.02.071 Gao, 2019, Solution mechanochemical approach for preparing high-dispersion SiO2-g-SSBR and the performance of modified silica/SSBR composites, Ind Eng Chem Res, 58, 7146, 10.1021/acs.iecr.8b06458 Sun, 2019, Improvement of silica dispersion in solution polymerized styrene–butadiene rubber via introducing amino functional groups, Ind Eng Chem Res, 58, 1454, 10.1021/acs.iecr.8b05738 Zhang, 2017, Improved mechanical and fatigue properties of graphene oxide/silica/SBR composites, RSC Adv, 7, 40813, 10.1039/C7RA06635J Payne, 1962, The dynamic properties of carbon black loaded natural rubber vulcanizates. Part II, J Appl Polym Sci, 6, 368, 10.1002/app.1962.070062115 Rivlin, 1953, Rupture of rubber. I. characteristic energy for tearing, J Polym Sci, 10, 291, 10.1002/pol.1953.120100303 Mullins, 1969, Softening of rubber by deformation, Rubber Chem Technol, 42, 339, 10.5254/1.3539210 Weng, 2014, Crack growth mechanism of natural rubber under fatigue loading studied by a real-time crack tip morphology monitoring method, RSC Adv, 4, 43942, 10.1039/C4RA06518B Liu, 2011, Fracture properties of natural rubber filled with hybrid carbon black/nanoclay, J Polym Res, 18, 859, 10.1007/s10965-010-9482-5 Brieu, 2010, Response of a carbon-black filled SBR under large strain cyclic uniaxial tension, Int J Fatigue, 32, 1921, 10.1016/j.ijfatigue.2010.06.002 Merckel, 2011, Experimental characterization and modelling of the cyclic softening of carbon-black filled rubbers, Mater Sci Eng, A, 528, 8651, 10.1016/j.msea.2011.08.023 Abraham, 2005, The effect of minimum stress and stress amplitude on the fatigue life of non strain crystallising elastomers, Mater Des, 26, 239, 10.1016/j.matdes.2004.02.020 Zhou, 2015, The influence of particle content on the equi-biaxial fatigue behaviour of magnetorheological elastomers, Mater Des, 67, 398, 10.1016/j.matdes.2014.11.056