Influence of graphene oxide and carbon nanotubes on the fatigue properties of silica/styrene-butadiene rubber composites under uniaxial and multiaxial cyclic loading
Tài liệu tham khảo
Peddini, 2015, Nanocomposites from styrene–butadiene rubber (SBR) and multiwall carbon nanotubes (MWCNT) part 2: Mechanical properties, Polymer, 56, 443, 10.1016/j.polymer.2014.11.006
Dong, 2016, Effects of hybrid filler networks of carbon nanotubes and carbon black on fracture resistance of styrene-butadiene rubber composites, Polym Eng Sci, 56, 1425, 10.1002/pen.24379
Legorju-jago, 2002, Fatigue initiation and propagation in natural and synthetic rubbers, Int J Fatigue, 24, 85, 10.1016/S0142-1123(01)00062-7
Saintier, 2006, Crack initiation and propagation under multiaxial fatigue in a natural rubber, Int J Fatigue, 28, 61, 10.1016/j.ijfatigue.2005.03.006
Tee, 2018, Recent advances on fatigue of rubber after the literature survey by Mars and Fatemi in 2002 and 2004, Int J Fatigue, 110, 115, 10.1016/j.ijfatigue.2018.01.007
Li, 2015, Toughening rubbers with a hybrid filler network of graphene and carbon nanotubes, J Mater Chem A, 3, 22385, 10.1039/C5TA05836H
Dong, 2015, Synergistic effects of carbon nanotubes and carbon black on the fracture and fatigue resistance of natural rubber composites, J Appl Polym Sci, 132, 10.1002/app.42075
Rooj, 2013, Influence of “expanded clay” on the microstructure and fatigue crack growth behavior of carbon black filled NR composites, Compos Sci Technol, 76, 61, 10.1016/j.compscitech.2012.12.020
Klüppel, 2009, The role of filler networking in fatigue crack propagation of elastomers under high-severity conditions, Macromol Mater Eng, 294, 130, 10.1002/mame.200800263
Le Cam, 2004, Mechanism of fatigue crack growth in carbon black filled natural rubber, Macromolecules, 37, 5011, 10.1021/ma0495386
Dong, 2014, Fracture and fatigue of silica/carbon black/natural rubber composites, Polym Test, 38, 40, 10.1016/j.polymertesting.2014.06.004
Harbour, 2008, Fatigue life analysis and predictions for NR and SBR under variable amplitude and multiaxial loading conditions, Int J Fatigue, 30, 1231, 10.1016/j.ijfatigue.2007.08.015
Kim, 2005, A study on the material properties and fatigue life of natural rubber with different carbon blacks, Int J Fatigue, 27, 263, 10.1016/j.ijfatigue.2004.07.002
Zheng, 2018, Chemical and physical interaction between silane coupling agent with long arms and silica and its effect on silica/natural rubber composites, Polymer, 135, 200, 10.1016/j.polymer.2017.12.010
Huneau, 2016, Fatigue crack initiation in a carbon black-filled natural rubber, Rubber Chem Technol, 89, 126, 10.5254/rct.15.84809
Xie, 2017, New evidence disclosed for the engineered strong interfacial interaction of graphene/rubber nanocomposites, Polymer, 118, 30, 10.1016/j.polymer.2017.04.056
Dong, 2015, Preparation, fracture, and fatigue of exfoliated graphene oxide/natural rubber composites, RSC Adv, 5, 17140, 10.1039/C4RA17051B
Zhou, 2019, Crack resistance improvement of rubber blend by a filler network of graphene, J Appl Polym Sci, 136, 47278, 10.1002/app.47278
Dong, 2017, Influences of different dimensional carbon-based nanofillers on fracture and fatigue resistance of natural rubber composites, Polym Test, 63, 281, 10.1016/j.polymertesting.2017.08.035
Hummers, 1958, Preparation of graphitic oxide, J Am Chem Soc, 80, 1339, 10.1021/ja01539a017
Mao, 2013, High performance graphene oxide based rubber composites, Sci Rep, 3, 2508, 10.1038/srep02508
Kaang, 2006, A test method to measure fatigue crack growth rate of rubbery materials, Polym Test, 25, 347, 10.1016/j.polymertesting.2005.12.005
Zhou, 2014, Fatigue life prediction of magnetorheological elastomers subjected to dynamic equi-biaxial cyclic loading, Mater Chem Phys, 146, 487, 10.1016/j.matchemphys.2014.03.059
Zhou, 2013, Multi-axial fatigue in magnetorheological elastomers using bubble inflation, Mater Des, 50, 68, 10.1016/j.matdes.2013.02.071
Gao, 2019, Solution mechanochemical approach for preparing high-dispersion SiO2-g-SSBR and the performance of modified silica/SSBR composites, Ind Eng Chem Res, 58, 7146, 10.1021/acs.iecr.8b06458
Sun, 2019, Improvement of silica dispersion in solution polymerized styrene–butadiene rubber via introducing amino functional groups, Ind Eng Chem Res, 58, 1454, 10.1021/acs.iecr.8b05738
Zhang, 2017, Improved mechanical and fatigue properties of graphene oxide/silica/SBR composites, RSC Adv, 7, 40813, 10.1039/C7RA06635J
Payne, 1962, The dynamic properties of carbon black loaded natural rubber vulcanizates. Part II, J Appl Polym Sci, 6, 368, 10.1002/app.1962.070062115
Rivlin, 1953, Rupture of rubber. I. characteristic energy for tearing, J Polym Sci, 10, 291, 10.1002/pol.1953.120100303
Mullins, 1969, Softening of rubber by deformation, Rubber Chem Technol, 42, 339, 10.5254/1.3539210
Weng, 2014, Crack growth mechanism of natural rubber under fatigue loading studied by a real-time crack tip morphology monitoring method, RSC Adv, 4, 43942, 10.1039/C4RA06518B
Liu, 2011, Fracture properties of natural rubber filled with hybrid carbon black/nanoclay, J Polym Res, 18, 859, 10.1007/s10965-010-9482-5
Brieu, 2010, Response of a carbon-black filled SBR under large strain cyclic uniaxial tension, Int J Fatigue, 32, 1921, 10.1016/j.ijfatigue.2010.06.002
Merckel, 2011, Experimental characterization and modelling of the cyclic softening of carbon-black filled rubbers, Mater Sci Eng, A, 528, 8651, 10.1016/j.msea.2011.08.023
Abraham, 2005, The effect of minimum stress and stress amplitude on the fatigue life of non strain crystallising elastomers, Mater Des, 26, 239, 10.1016/j.matdes.2004.02.020
Zhou, 2015, The influence of particle content on the equi-biaxial fatigue behaviour of magnetorheological elastomers, Mater Des, 67, 398, 10.1016/j.matdes.2014.11.056