Influence of glass fiber and cement kiln dust on physicochemical and geomechanical properties of fine-grained soil

Nadeem Gul1, Bashir Ahmed Mir1
1Department of Civil Engineering, National Institute of Technology, Srinagar, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Horpibulsuk S, Kumpala A, Katkan W (2008) A case history on underpinning for a distressed building on hard residual soil underneath non-uniform loose sand. Soils Found 48(2):267–285. https://doi.org/10.3208/sandf.48.267

Ismail MA, Joer HA, Sim WH, Randolph MF (2002) Effect of cement type on shear behavior of cemented calcareous soil. J Geotech Geoenviron Eng 128(6):520–529. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:6(520)

Al-Rawas AA (2002) Microfabric and mineralogical studies on the stabilization of an expansive soil using cement by-pass dust and some types of slags. Can Geotech J 39(5):1150–1167. https://doi.org/10.1139/t02-046

Haralambos SI (2009) Compressive strength of soil improved with cement. In: Contemporary topics in ground modification, problem soils, and geo-support, pp 289–296. https://doi.org/10.1061/41023(337)37

Consoli NC, Winter D, Rilho AS, Festugato L, dos Santos Teixeira B (2015) A testing procedure for predicting strength in artificially cemented soft soils. Eng Geol 195:327–334. https://doi.org/10.1016/j.enggeo.2015.06.005

Mir BA, Sridharan A (2019) Mechanical behaviour of fly-ash-treated expansive soil. Proc Inst Civ Eng Ground Improv 172(1):12–24. https://doi.org/10.1680/jgrim.16.00024

Arulrajah A, Abdullah A, Bo MW, Bouazza A (2009) Ground improvement techniques for railway embankments. Proc Inst Civ Eng Ground Improv 162(1):3–14. https://doi.org/10.1680/grim.2009.162.1.3

Latifi N, Horpibulsuk S, Meehan CL, Abd Majid MZ, Tahir MM, Mohamad ET (2017) Improvement of problematic soils with biopolymer—an environmentally friendly soil stabilizer. J Mater Civ Eng 29(2):04016204. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001706

Mistry MK, Shukla SJ, Solanki CH (2021) Reuse of waste tyre products as a soil reinforcing material: a critical review. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-13522-4

Dermatas D, Meng X (2003) Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils. Eng Geol 70(3–4):377–394. https://doi.org/10.1016/S0013-7952(03)00105-4

Venkatachalam MN, Balu S (2022) A review on the application of industrial waste as reinforced earth fills in mechanically stabilized earth retaining walls. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-17953-x

Mir BA, Sridharan A (2013) Physical and compaction behaviour of clay soil–fly ash mixtures. Geotech Geol Eng 31(4):1059–1072. https://doi.org/10.1007/s10706-013-9632-8

Miller GA, Azad S (2000) Influence of soil type on stabilization with cement kiln dust. Constr Build Mater 14(2):89–97. https://doi.org/10.1016/S0950-0618(00)00007-6

Sreekrishnavilasam A, Rahardja S, Kmetz R, Santagata M (2007) Soil treatment using fresh and landfilled cement kiln dust. Constr Build Mater 21(2):318–327. https://doi.org/10.1016/j.conbuildmat.2005.08.015

Ghavami S, Naseri H, Jahanbakhsh H, Nejad FM (2021) The impacts of nano-SiO2 and silica fume on cement kiln dust treated soil as a sustainable cement-free stabilizer. Constr Build Mater 285:122918. https://doi.org/10.1016/j.conbuildmat.2021.122918

Ebrahimi A, Edil TB, Son YH (2012) Effectiveness of cement kiln dust in stabilizing recycled base materials. J Mater Civ Eng 24(8):1059–1066. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000472

Kumar JS, Janewoo U (2016) Stabilization of expansive soil with cement kiln dust and RBI grade 81 at subgrade level. Geotech Geol Eng 34(4):1037–1046. https://doi.org/10.1007/s10706-016-0024-8

Al-Homidy AA, Dahim MH, Abd El Aal AK (2017) Improvement of geotechnical properties of sabkha soil utilizing cement kiln dust. J Rock Mech Geotech Eng 9(4):749–760. https://doi.org/10.1016/j.jrmge.2016.11.012

Sreekrishnavilasam A, King S, Santagata M (2006) Characterization of fresh and landfilled cement kiln dust for reuse in construction applications. Eng Geol 85(1–2):165–173. https://doi.org/10.1680/geimogacl.32774.0036

Prabakar J, Sridhar RS (2002) Effect of random inclusion of sisal fibre on strength behaviour of soil. Constr Build Mater 16(2):123–131. https://doi.org/10.1016/S0950-0618(02)00008-9

Tang CS, Cheng Q, Wang P, Wang HS, Wang Y, Inyang HI (2020) Hydro-mechanical behavior of fiber reinforced dredged sludge. Eng Geol 276:105779. https://doi.org/10.1016/j.enggeo.2020.105779

Viswanadham BVS, Phanikumar BR, Mukherjee RV (2009) Swelling behaviour of a geofiber-reinforced expansive soil. Geotext Geomembr 27(1):73–76. https://doi.org/10.1016/j.geotexmem.2008.06.002

Tang CS, Shi B, Zhao LZ (2010) Interfacial shear strength of fiber reinforced soil. Geotext Geomembr 28(1):54–62. https://doi.org/10.1016/j.geotexmem.2009.10.001

Zornberg JG (2002) Discrete framework for limit equilibrium analysis of fibre-reinforced soil. Géotechnique 52(8):593–604. https://doi.org/10.1680/geot.2002.52.8.593

Shukla SK (2017) Fundamentals of fibre-reinforced soil engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-3063-5

Huang Y, Wen Z (2015) Recent developments of soil improvement methods for seismic liquefaction mitigation. Nat Hazards 76:1927–1938. https://doi.org/10.1007/s11069-014-1558-9

Amadi AA, Eberemu AO, Momoh OH (2013) Use of coir fiber reinforcement technique to improve strength of cement kiln dust treated black cotton soil subgrade. In: Geosynthetics. Long Beach, pp 223–229

Kaniraj SR, Havanagi VG (2001) Behavior of cement-stabilized fiber-reinforced fly ash–soil mixtures. J Geotech Geoenviron Eng 127(7):574–584. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:7(574)

Park SS (2009) Effect of fiber reinforcement and distribution on unconfined compressive strength of fiber-reinforced cemented sand. Geotext Geomembr 27(2):162–166. https://doi.org/10.1016/j.geotexmem.2008.09.001

Murray JJ, Frost JD, Wang Y (2000) Behaviour of a sandy silt reinforced with discontinuous recycled fiber inclusions. Transp Res Rec 1714(1):9–17. https://doi.org/10.3141/1714-02

Zaimoglu AS, Yetimoglu T (2012) Strength behaviour of fine grained soil reinforced with randomly distributed polypropylene fibers. Geotech Geol Eng 30(1):197–203. https://doi.org/10.1007/s10706-011-9462-5

Yetimoglu T, Salbas O (2003) A study on shear strength of sands reinforced with randomly distributed discrete fibers. Geotext Geomembr 21(2):103–110. https://doi.org/10.1016/S0266-1144(03)00003-7

Kumar JS, Sharma P (2018) Geotechnical properties of pond ash mixed with cement kiln dust and polypropylene fiber. J Mater Civ Eng 30(8):04018154. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002334

Sharma RK (2017) Laboratory study on stabilization of clayey soil with cement kiln dust and fiber. Geotech Geol Eng 35(5):2291–2302. https://doi.org/10.1007/s10706-017-0245-5

Puppala A, Hoyos L, Viyanant C, Musenda C (2001) Fiber and fly ash stabilization methods to treat soft expansive soils. In: Soft ground technology, pp 136–145. https://doi.org/10.1061/40552(301)11

Kumar A, Gupta D (2016) Behavior of cement-stabilized fiber-reinforced pond ash, rice husk ash–soil mixtures. Geotext Geomembr 44(3):466–474. https://doi.org/10.1016/j.geotexmem.2015.07.010

Khan RA, Shah MY (2016) Earthquake induced liquefaction features in the Karewas of Kashmir Valley North-West Himalayas, India: implication to paleoseismicity. Soil Dyn Earthq Eng 90:101–111. https://doi.org/10.1016/j.soildyn.2016.08.007

Gul N, Mir BA (2022) Parametric study of glass fiber reinforced fine-grained soil with emphasis on microstructural analysis. Int J Geotech Eng 16(6):716–728. https://doi.org/10.1080/19386362.2022.2049524

Eades JL, Grim, RE (1966) A quick test to determine lime requirements for lime stabilization. In: Highway research record, No. 139

Nasr AM (2014) Utilisation of oil-contaminated sand stabilised with cement kiln dust in the construction of rural roads. Int J Pavement Eng 15(10):889–905. https://doi.org/10.1080/10298436.2014.893321

ASTM D698-12 (2012) Standard Test methods for laboratory compaction characteristics of soil using standard effort (12,400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International

ASTM D2166 (2013) Standard test method for unconfined compressive strength of cohesive soil. ASTM International

Ramanathan B, Raman V (1974) Split tensile strength of cohesive soils. Soils Found 14(1):71–76. https://doi.org/10.3208/sandf1972.14.71

Tang CS, Wang DY, Cui YJ, Shi B, Li J (2016) Tensile strength of fiber-reinforced soil. J Mater Civ Eng 28(7):04016031. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001546

Ismail AIM, Belal ZL (2016) Use of cement kiln dust on the engineering modification of soil materials, Nile Delta, Egypt. Geotech Geol Eng 34(2):463–469. https://doi.org/10.1007/s10706-015-9957-6

Baghdadi ZA, Fatani MN, Sabban NA (1995) Soil modification by cement kiln dust. J Mater Civ Eng 7(4):218–222. https://doi.org/10.1061/(ASCE)0899-1561(1995)7:4(218)

Al-Refeai TO, Al-Karni AA (1999) Experimental study on the utilization of cement kiln dust for ground modification. J King Saud Univ Eng Sci 11(2):217–231. https://doi.org/10.1016/S1018-3639(18)30999-1

Solanki P, Khoury N, Zaman M (2007) Engineering behavior and microstructure of soil stabilized with cement kiln dust. In: Soil improvement, pp 1–10. https://doi.org/10.1061/40916(235)6

Consoli NC, De Moraes RR, Festugato L (2011) Split tensile strength of monofilament polypropylene fiber-reinforced cemented sandy soils. Geosynth Int 18(2):57–62. https://doi.org/10.1680/gein.2011.18.2.57

Festugato L, da Silva AP, Diambra A, Consoli NC, Ibraim E (2018) Modelling tensile/compressive strength ratio of fibre reinforced cemented soils. Geotext Geomembr 46(2):155–165. https://doi.org/10.1016/j.geotexmem.2017.11.003

Mosa AM, Taher AH, Al-Jaberi LA (2017) Improvement of poor subgrade soils using cement kiln dust. Case Stud Constr Mater 7:138–143. https://doi.org/10.1016/j.cscm.2017.06.005

Sargent P (2015) The development of alkali-activated mixtures for soil stabilisation. Handbook of alkali-activated cements, mortars and concretes. Woodhead Publishing, pp 555–604. https://doi.org/10.1533/9781782422884.4.555

Gupta D, Kumar A (2016) Strength characterization of cement stabilized and fiber reinforced clay–pond ash mixes. Int J Geosynth Ground Eng 2(4):1–11. https://doi.org/10.1007/s40891-016-0069-z

Tang C, Shi B, Gao W, Chen F, Cai Y (2007) Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotext Geomembr 25(3):194–202. https://doi.org/10.1016/j.geotexmem.2006.11.002

Tabakouei AR, Narani SS, Abbaspour M, Aflaki E, Siddiqua S (2022) Coupled specimen and fiber dimensions influence measurement on the properties of fiber-reinforced soil. Measurement 188:110556. https://doi.org/10.1016/j.measurement.2021.110556