Influence of feed particle size on upgrading selectivity of scavenger stage of industrial copper ore flotation
Tóm tắt
The copper sulfide ore from the Legnica-Glogow Copper Basin in Poland, which is processed by KGHM Polska Miedz S.A., consists of three lithological fractions: dolomitic, sandstone and shale. The copper ore, depending on the mining area, contains all fractions in different ratios. The lithological fractions differ in the particle-size distributions of their useful minerals. In the dolomitic part of the ore, most of the metal sulfide particles are 50–200 microns in size, while those in the sandstone and carbonaceous shale are 30–200 and 5–40 microns in size, respectively. This complex composition results in different mineralization, physicochemical properties and, in particular, upgrading selectivity. Due to the specific nature of the examined copper ore, two of the crucial parameters determining the beneficiation efficiency are size and liberation of sulfide particles. We analyzed the influence of grain size of feed on scavenging selectivity in one of the KGHM flotation plants and performed evaluation and analysis of the upgrading results of industrial beneficiation of the ore, containing mostly dolomite and shale. The upgrading efficiency was estimated using a selectivity indicator obtained by means of the Fuerstenau upgrading curve, which was then correlated with the particle-size distribution of the flotation feed.
Tài liệu tham khảo
Ahmed, N., and Jameson, G.J., 1985, “The effect of bubble size on the rate of flotation of fine particles,” International Journal of Mineral Processing, Vol. 14, No. 3, pp. 195–215.
Brozek, M., and Mlynarczykowska, A., 2007, “Analysis of kinetics models of batch flotation,” Physicochemical Problems of Mineral Processing, Vol. 41, pp. 51–65.
Debacher, N.A., 2002, “Kinetics and mechanism of coal flotation,” Colloid and Polymer Science, Vol. 280, Florianopolis.
Drzymala, J., 1994, “Characterization of materials by Hallimond tube flotation. Part 2: maximum size of floating particles and contact angle,” International Journal of Mineral Processing, Vol. 42, No. 3–4, pp. 153–167.
Drzymala, J., 2005, “Evaluation and comparison of separation performance for varying feed composition and scattered separation results,” International Journal of Mineral Processing, Vol. 75, No. 3–4, pp. 189–196.
Drzymala, J., and Ahmed, H.A.M., 2005,“Mathematical equations for approximation of separation results using the Fuerstenau upgrading curves,” International Journal of Mineral Processing, Vol. 76, No. 1–2, pp. 55–65.
Duchnowska, M., and Drzymala, J., 2011, “Transformation of equation y = a(100-x)/(a-x) for approximation of separation results plotted as Fuerstenau’s upgrading curve for application in other upgrading curves,” Physicochemical Problems of Mineral Processing, Vol. 47, pp. 123–130.
Feng, D., and Aldrich, C., 1999, “Effect of particle size on flotation performance of complex sulphide ores,” Minerals Engineering, Vol. 12, No. 7, pp. 721–731.
Gaudin, A.M., Groh, J.O., and Henderson, H.B., 1931, “Effect of particle size on flotation,” American Institute of Mining and Metallurgical Engineering, Tech. Publ., Vol. 414, pp. 3–23.
George, P., Nguyen, A.V., and Jameson, G.J., 2004, “Assessment of true flotation and entrainment in the flotation of submicron particles by fine bubbles”, Minerals Engineering, Vol. 17, No. 7–8, pp. 847–853.
Johnson, N.W., 2006, “Liberated 0–10 mm particles from sulphide ores, their production and separation — recent developments and future needs,” Minerals Engineering, Vol. 19, No. 6–8, pp. 666–674.
Johnson, R.A., and Wichern, D.W., 2007, Applied Multivariate Statistical Analysis, Prentice Hall, New York.
Kijewski, P., and Jarosz, J., 2007, “Wtaściwości kopalin,” Monografia KGHM Polska Miedź S.A., Praca zbiorowa pod redakcją A. Piestrzynskiego, KGHM Cuprum Sp. z o.o. CBR, Lubin, pp. 244–246.
Klassen, V.l., and Mokrousov, W.A., 1959, Vvedeniye v teoriyu flotacii, Gosudarstvennoye Nauchno-Tekhnicheskoye Izdatel’stvo Literatury po Gornomu Delu. Moskva.
Konopacka, Z., 2005, Flotacja mechaniczna, Oficyna Wydawnicza Politechniki Wroctawskiej, Wrocław.
Konstantynowicz-Zielinska, J., 1990, “Petrografia i geneza tupków miedzionośnych monokliny przedsudeckiej,” Rudy i Metale Nieżelazne, Vol. 35, No. 5–6, pp. 128–133.
Kucha, H., 2007, “Mineralogia kruszcowa i geochemia ciała rudnego złoża Lubin-Sieroszowice,” Biuletyn Państwowego Instytutu Geologicznego, Vol. 423, pp. 77–94.
Lynch, A.J., Johnson, N.W., Manlapig, E.V., and Thorne, C.G., 1981, “Mineral and coal flotation circuits,” Dev. Miner. Process, D.W. Fuerstenau, ed., Elsevier Science Publisher B.V., Vol. 3, Amsterdam.
Nihill, D., Stewart, C., and Bowen, P., 1998, “The McArthur River mine—the first years of operation,” Proceedings AusIMM 98 Annual Conference, April 1998, The Australasian Institute of Mining and Metallurgy, pp. 73–82.
Oteyaka, B., and Soto, H., 1995, “Modeling of negative bias column for coarse particles flotation,” Minerals Engineering, Vol. 8, No. 1/2, pp. 91–100.
Pease, J.D., Young, M.F., Curry, D., and Johnson, N.W., 2004, “Improving fines recovery by grinding finer,” MetPlant, Centenary of Flotation Symposium, Brisbane, Australia, pp. 1–17.
Piestrzynski, A., 2007, “Okruszcowanie,” Monografia KGHM Polska Miedź S.A., A. Piestrzynski, A. Banaszak and M. Zaleska-Kuczmierczyk, eds., Lubin, pp. 167–196.
Potulska, A., 2008, “Wptyw Drobnego Mielenia na Flotację Krajowych rud Miedzi,” Ph.D. Thesis, Wroclaw University of Technology.
Schulze, H.J., 1993, “Flotation as a heterocoagulation process: possibilities of calculating the probability of flotation,” Coagulation and flocculation. Theory and applications, B. Dobiaę, ed., Marcel Dekker Inc. New York, pp. 321–353.
Solari, J.A., and Gochin, R.J., 1992, “Fundamental aspects of microbubble flotation process,” Colloid Chemistry in Mineral Processing, Developments in Mineral Processing, J.S. Laskowski and J. Ralston, eds., Elsevier, Vol. 12, pp. 361–399.
Spalinska, B., Stec, R., and Sztaba, K., 1996, “Miejsce i rola przeróbki rudy w kompleksie technologicznym KGHM Polska Miedź S.A.,” Monografia KGHM Polska Miedź S.A., Praca zbiorowa pod redakcją A. Piestrzynskiego, KGHM Cuprum Sp. z o.o. CBR, Lubin, pp. 637–648.
Sutherland, K.L., and Wark, I.W., 1955, Principles of Flotation, Aus. I. M. M. (Melbourne), Vol. VIII, pp. 92–142.
Taggart, A.F, 1956, Handbook of Mineral Dressing, Ores and Industrial Minerals, John Wiley and Sons, New York, Section 12.
Tao, D., 2005, “Role of bubble size in flotation of coarse and fine particles — a review,” Separation Science and Technology, Vol. 39, No. 4, pp. 741–760.
Trahar, W.J., 1976, “The selective flotation of galena from sphalerite with special reference to the effect of particle size,” International Journal of Mineral Processing, Vol. 3, No. 2, pp. 151–166.
Trahar, W.J., and Warren, L.J., 1976, “The flotability of very fine particles — a review,” International Journal of Mineral Processing, Vol. 3, No. 2, pp. 103–131.
Vianna, S.M., Franzidis, J.P., Manlapig, E.V., Silvester, E., and Fu, PH., 2003, “The influence of particle size and collector coverage on the floatability of galena particles in a natural ore,” Proceedings of the XXII International Mineral Processing Congress, L. Lorenzen and D.J. Bradshaw, eds., Cape Town, South Africa, Vol. 2, pp. 816–826.
Volk, W., 1973, Statystyka stosowana dla inzynierów, Wydawnictwo Naukowo-Techniczne, Warszawa.
Yoon, R.H., 2000, “The role of hydrodynamic and surface forces in bubble-particle interaction,” International Journal of Mineral Processing, Vol. 58, No. 1–4, pp. 128–143.