Influence of different thermal cycling treatments on the physical, mechanical and transport properties of granite

Geothermics - Tập 78 - Trang 118-128 - 2019
Peihua Jin1,2, Yaoqing Hu1,2, Jixi Shao1,2, Guokai Zhao1,2, Xiaozhou Zhu1,2, Chun Li1,2
1Institute of Mining Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
2Key Laboratory of In-situ Property Improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Becattini, 2017, Experimental investigation of the thermal and mechanical stability of rocks for high-temperature thermal-energy storage, Appl. Energy, 203, 373, 10.1016/j.apenergy.2017.06.025

Bérard, 2003, Evidence of thermally induced borehole elongation: a case study at soultz, France, Int. J. Rock Mech. Min. Sci., 40, 1121, 10.1016/S1365-1609(03)00118-7

Brace, 1968, Permeability of granite under high pressure, J. Geophys. Res., 73, 2225, 10.1029/JB073i006p02225

Brotóns, 2013, Temperature influence on the physical and mechanical properties of a porous rock: San julian’s calcarenite, Eng. Geol., 167, 117, 10.1016/j.enggeo.2013.10.012

Chaki, 2008, Influence of thermal damage on physical properties of a granite rock: porosity, permeability and ultrasonic wave evolutions, Constr. Build. Mater., 22, 1456, 10.1016/j.conbuildmat.2007.04.002

Chen, 2017, Evolution of thermal damage and permeability of beishan granite, Appl. Therm. Eng., 110, 1533, 10.1016/j.applthermaleng.2016.09.075

Darot, 1992, Permeability of thermally cracked granite, Geophys. Res. Lett., 19, 869, 10.1029/92GL00579

David, 1999, Influence of stress-induced and thermal cracking on physical properties and microstructure of la peyratte granite, Int. J. Rock Mech. Min. Sci., 36, 433, 10.1016/S0148-9062(99)00010-8

David, 2012, Sliding crack model for nonlinearity and hysteresis in the uniaxial stress–strain curve of rock, Int. J. Rock Mech. Min. Sci., 52, 9, 10.1016/j.ijrmms.2012.02.001

Fredrich, 1986, Micromechanics of thermally induced cracking in three crustal rocks, J. Geophys. Res. (Sol. Ea.), 91, 12743, 10.1029/JB091iB12p12743

Freire-Lista, 2016, Thermal stress-induced microcracking in building granite, Eng. Geol., 206, 83, 10.1016/j.enggeo.2016.03.005

Fu, 2015, Thermal drawdown-induced flow channeling in fractured geothermal reservoirs, Rock Mech. Rock Eng., 49, 1001, 10.1007/s00603-015-0776-0

Ghassemi, 2012, A review of some rock mechanics issues in geothermal reservoir development, Geotech. Geol. Eng., 30, 647, 10.1007/s10706-012-9508-3

Ghassemi, 2016, Thermo-poroelastic effects on reservoir seismicity and permeability change, Geothermics, 63, 210, 10.1016/j.geothermics.2016.02.006

Ghassemi, 2015, Analysis of fracture propagation under thermal stress in geothermal reservoirs

Ghassemi, 2005, Integral equation solution of heat extraction-induced thermal stress in enhanced geothermal reservoirs, Int. J. Numer. Anal. Methods Geomech., 29, 829, 10.1002/nag.440

Ghassemi, 2007, A 3-d study of the effects of thermomechanical loads on fracture slip in enhanced geothermal reservoirs, Int. J. Rock Mech. Min. Sci., 44, 1132, 10.1016/j.ijrmms.2007.07.016

Glover, 1995, A/β phase transition in quartz monitored using acoustic emissions, Geophys. J. Int., 120, 775, 10.1111/j.1365-246X.1995.tb01852.x

Griffiths, 2017, Quantification of microcrack characteristics and implications for stiffness and strength of granite, Int. J. Rock Mech. Min. Sci., 100, 138, 10.1016/j.ijrmms.2017.10.013

Griffiths, 2018, Thermal cracking in westerly granite monitored using direct wave velocity, coda wave interferometry, and acoustic emissions, J. Geophys. Res. (Sol. Ea.)., 123, 2246, 10.1002/2017JB015191

Heap, 2018, Thermal resilience of microcracked andesitic dome rocks, J. Volcanol. Geoth. Res., 367, 20, 10.1016/j.jvolgeores.2018.10.021

Heap, 2018, Permeability of volcanic rocks to gas and water, J. Volcanol. Geoth. Res., 354, 29, 10.1016/j.jvolgeores.2018.02.002

Heuze, 1983, High-temperature mechanical, physical and thermal properties of granitic rocks- a review, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 20, 3, 10.1016/0148-9062(83)91609-1

Inserra, 2013, Influence of thermal damage on linear and nonlinear acoustic properties of granite, Int. J. Rock Mech. Min. Sci., 62, 96, 10.1016/j.ijrmms.2013.05.001

ISRM, 2007

Jansen, 1993, Ultrasonic imaging and acoustic emission monitoring of thermally induced microcracks in lac du bonnet granite, J. Geophys. Res. (Sol. Ea.), 98, 22231, 10.1029/93JB01816

Kamali-Asl, 2018, Experimental study of fracture response in granite specimens subjected to hydrothermal conditions relevant for enhanced geothermal systems, Geothermics, 72, 205, 10.1016/j.geothermics.2017.11.014

Kant, 2017, Thermal properties of central aare granite for temperatures up to 500°C: irreversible changes due to thermal crack formation, Geophys. Res. Lett., 44, 771, 10.1002/2016GL070990

Kim, 2013, Effect of rapid thermal cooling on mechanical rock properties, Rock Mech. Rock Eng., 47, 2005, 10.1007/s00603-013-0523-3

Koh, 2011, A numerical study on the long term thermo-poroelastic effects of cold water injection into naturally fractured geothermal reservoirs, Comput. Geotech., 38, 669, 10.1016/j.compgeo.2011.03.007

Kohl, 1995, Coupled hydraulic, thermal and mechanical considerations for the simulation of hot dry rock reservoirs, Geothermics, 24, 345, 10.1016/0375-6505(95)00013-G

Kranz, 1983, Microcracks in rocks: a review, Tectonophysics, 100, 449, 10.1016/0040-1951(83)90198-1

Kumari, 2017, Temperature-dependent mechanical behaviour of australian strathbogie granite with different cooling treatments, Eng. Geol., 229, 31, 10.1016/j.enggeo.2017.09.012

Kumari, 2017, Mechanical behaviour of australian strathbogie granite under in-situ stress and temperature conditions: an application to geothermal energy extraction, Geothermics, 65, 44, 10.1016/j.geothermics.2016.07.002

Kumari, 2018, Experimental investigation of quenching effect on mechanical, microstructural and flow characteristics of reservoir rocks: thermal stimulation method for geothermal energy extraction, J. Petrol. Sci. Eng., 162, 419, 10.1016/j.petrol.2017.12.033

Lam dos Santos, 2011, Temperature effects on mechanical behaviour of engineered stones, Constr. Build. Mater., 25, 171, 10.1016/j.conbuildmat.2010.06.042

Lin, 2002, Permanent strain of thermal expansion and thermally induced microcracking in inada granite, J. Geophys. Res. (Sol. Ea.), 107

Liu, 2016, Changes in mineralogy, microstructure, compressive strength and intrinsic permeability of two sedimentary rocks subjected to high-temperature heating, Rock Mech. Rock Eng., 49, 2985, 10.1007/s00603-016-0950-z

MIT, 2006

Nasseri, 2007, Coupled evolutions of fracture toughness and elastic wave velocities at high crack density in thermally treated westerly granite, Int. J. Rock Mech. Min. Sci., 44, 601, 10.1016/j.ijrmms.2006.09.008

Reuschlé, 2006, The effect of heating on the microstructural evolution of la peyratte granite deduced from acoustic velocity measurements, Earth. Planet. Sci. Lett., 243, 692, 10.1016/j.epsl.2006.01.038

Richter, 1974, Thermal expansion behavior of igneous rocks, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 11, 403, 10.1016/0148-9062(74)91111-5

Rossi, 2018, The effects of high heating rate and high temperature on the rock strength: feasibility study of a thermally assisted drilling method, Rock Mech. Rock Eng., 51, 2957, 10.1007/s00603-018-1507-0

Safari, 2015, 3d thermo-poroelastic analysis of fracture network deformation and induced micro-seismicity in enhanced geothermal systems, Geothermics, 58, 1, 10.1016/j.geothermics.2015.06.010

Sander, 2017, Laboratory measurement of low permeability unconventional gas reservoir rocks: a review of experimental methods, J. Nat. Gas Sci. Eng., 37, 248, 10.1016/j.jngse.2016.11.041

Shao, 2014, Effect of cooling rate on the mechanical behavior of heated strathbogie granite with different grain sizes, Int. J. Rock Mech. Min. Sci., 70, 381, 10.1016/j.ijrmms.2014.04.003

Shao, 2015, Experimental and numerical studies on the mechanical behaviour of australian strathbogie granite at high temperatures: an application to geothermal energy, Geothermics, 54, 96, 10.1016/j.geothermics.2014.11.005

Siratovich, 2011, Thermal stimulation of geothermal reservoirs and laboratory investigation of thermally induced fractures, Trans. – Geotherm. Resour. Council, 35, 1529

Siratovich, 2015, Saturated heating and quenching of three crustal rocks and implications for thermal stimulation of permeability in geothermal reservoirs, Int. J. Rock Mech. Min. Sci., 80, 265, 10.1016/j.ijrmms.2015.09.023

Siratovich, 2016, Mechanical behaviour of the rotokawa andesites (new zealand): insight into permeability evolution and stress-induced behaviour in an actively utilised geothermal reservoir, Geothermics, 64, 163, 10.1016/j.geothermics.2016.05.005

Sun, 2015, Thermal damage pattern and thresholds of granite, Environ. Earth Sci., 74, 2341, 10.1007/s12665-015-4234-9

Tao, 2010, Poro-thermoelastic borehole stress analysis for determination of the in situ stress and rock strength, Geothermics, 39, 250, 10.1016/j.geothermics.2010.06.004

Tarasovs, 2012, On the role of thermal stress in reservoir stimulation

Thirumalai, 1974, Thermal expansion behavior of intact and thermally fractured mine rocks, 60

Todd, 1973

Vidal, 2018, Overview of naturally permeable fractured reservoirs in the central and southern upper rhine graben: insights from geothermal wells, Geothermics, 74, 57, 10.1016/j.geothermics.2018.02.003

Violay, 2017, Porosity evolution at the brittle-ductile transition in the continental crust: implications for deep hydro-geothermal circulation, Sci. Rep., 7, 7705, 10.1038/s41598-017-08108-5

Walsh, 1965, The effect of cracks on the compressibility of rock, J. Geophys. Res., 70, 381, 10.1029/JZ070i002p00381

Wang, 2013, Physical properties and brittle strength of thermally cracked granite under confinement, J. Geophys. Res. (Sol. Ea.), 118, 6099, 10.1002/2013JB010340

Wu, 2007, Thermal technique for controlling hydraulic fractures, J. Geophys. Res., 112, 1, 10.1029/2005JB003815

Yan, 2014, Borehole stability in high-temperature formations, Rock Mech. Rock Eng., 47, 2199, 10.1007/s00603-013-0496-2

Yang, 2017, An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments, Geothermics, 65, 180, 10.1016/j.geothermics.2016.09.008

Yang, 2017, Experimental investigation on triaxial mechanical and permeability behavior of sandstone after exposure to different high temperature treatments, Geothermics, 69, 93, 10.1016/j.geothermics.2017.04.009

Yin, 2015, Effects of thermal treatment on tensile strength of laurentian granite using brazilian test, Rock Mech. Rock Eng., 48, 2213, 10.1007/s00603-015-0712-3

Yong, 1980, Thermally induced acoustic emission in westerly granite, Geophys. Res. Lett., 7, 1089, 10.1029/GL007i012p01089

Zhang, 2016, Experimental study on the variation of physical and mechanical properties of rock after high temperature treatment, Appl. Therm. Eng., 98, 1297, 10.1016/j.applthermaleng.2016.01.010

Zhao, 2015, Thermal influence on mechanical properties of granite: a microcracking perspective, Rock Mech. Rock Eng., 49, 747, 10.1007/s00603-015-0767-1

Zhao, 2008, Micro-CT experimental technology and meso-investigation on thermal fracturing characteristics of granite, Chin. J. Rock Mech. Eng., 27, 28

Zhao, 2012, Triaxial compression system for rock testing under high temperature and high pressure, Int. J. Rock Mech. Min. Sci., 52, 132, 10.1016/j.ijrmms.2012.02.011

Zhao, 2015, THM (thermo-hydro-mechanical) coupled mathematical model of fractured media and numerical simulation of a 3d enhanced geothermal system at 573 K and buried depth 6000–7000 m, Energy, 82, 193, 10.1016/j.energy.2015.01.030

Zhao, 2015, Deformation and instability failure of borehole at high temperature and high pressure in hot dry rock exploitation, Renew. Energy, 77, 159, 10.1016/j.renene.2014.11.086

Zhao, 2017, Experimental investigation on thermal cracking, permeability under HTHP and application for geothermal mining of HDR, Energy, 132, 305, 10.1016/j.energy.2017.05.093