Influence of chemical denaturants on the activity, fold and zinc status of anthrax lethal factor
Tài liệu tham khảo
Mock, 2001, Anthrax, Annu. Rev. Microbiol., 55, 647, 10.1146/annurev.micro.55.1.647
Collier, 2003, Anthrax toxin, Annu. Rev. Cell Dev. Biol., 19, 45, 10.1146/annurev.cellbio.19.111301.140655
Young, 2007, Anthrax toxin: receptor binding, internalization, pore formation, and translocation, Annu. Rev. Biochem., 76, 243, 10.1146/annurev.biochem.75.103004.142728
Petosa, 1997, Crystal structure of the anthrax toxin protective antigen, Nature, 385, 833, 10.1038/385833a0
Thoren, 2011, The unfolding story of anthrax toxin translocation, Mol. Microbiol., 80, 588, 10.1111/j.1365-2958.2011.07614.x
Feld, 2012, Ratcheting up protein translocation with anthrax toxin, Protein Sci., 21, 606, 10.1002/pro.2052
Collier, 2009, Membrane translocation by anthrax toxin, Mol. Aspects Med., 30, 413, 10.1016/j.mam.2009.06.003
Drum, 2002, Structural basis for the activation of anthrax adenylyl cyclase exotoxin by calmodulin, Nature, 415, 396, 10.1038/415396a
Duesbery, 1998, Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor, Science, 280, 734, 10.1126/science.280.5364.734
Vitale, 1998, Anthrax lethal factor cleaves the N-terminus of MAPKKs and induces tyrosine/threonine phosphorylation of MAPKs in cultured macrophages, Biochem. Biophys. Res. Commun., 248, 706, 10.1006/bbrc.1998.9040
Levinsohn, 2012, Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome, PLoS Pathog., 8, e1002638, 10.1371/journal.ppat.1002638
Hellmich, 2012, Anthrax lethal factor cleaves mouse nlrp1b in both toxin-sensitive and toxin-resistant macrophages, PLoS One, 7, e49741, 10.1371/journal.pone.0049741
Chavarría-Smith, 2013, Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor, PLoS Pathog., 9, e1003452, 10.1371/journal.ppat.1003452
Pannifer, 2001, Crystal structure of the anthrax lethal factor, Nature, 414, 229, 10.1038/n35101998
Lipscomb, 1996, Recent advances in zinc enzymology, Chem. Rev., 96, 2375, 10.1021/cr950042j
Krantz, 2004, Acid-induced unfolding of the amino-terminal domains of the lethal and edema factors of anthrax toxin, J. Mol. Biol., 344, 739, 10.1016/j.jmb.2004.09.067
Krantz, 2005, A phenylalanine clamp catalyzes protein translocation through the anthrax toxin pore, Science, 309, 777, 10.1126/science.1113380
Thoren, 2009, Lethal factor unfolding is the most force-dependent step of anthrax toxin translocation, Proc. Natl. Acad. Sci. USA, 106, 21555, 10.1073/pnas.0905880106
Feld, 2010, Structural basis for the unfolding of anthrax lethal factor by protective antigen oligomers, Nat. Struct. Mol. Biol., 17, 1383, 10.1038/nsmb.1923
Montpellier, 2013, Effect of pH on the catalytic function and zinc content of native and immobilized anthrax lethal factor, FEBS Lett., 587, 317, 10.1016/j.febslet.2012.11.035
Säbel, 2011, Preparation and characterization of cobalt-substituted anthrax lethal factor, Biochem. Biophys. Res. Commun., 416, 106, 10.1016/j.bbrc.2011.11.005
Säbel, 2010, Alkaline earth metals are not required for the restoration of the apoform of anthrax lethal factor to its holoenzyme state, Biochem. Biophys. Res. Commun., 403, 209, 10.1016/j.bbrc.2010.11.009
Lo, 2014, High metal substitution tolerance of anthrax lethal factor and characterization of its active copper-substituted analogue, J. Inorg. Biochem., 140, 12, 10.1016/j.jinorgbio.2014.06.009
Tonello, 2002, Screening inhibitors of anthrax lethal factor, Nature, 418, 386, 10.1038/418386a
Pace, 1975, The stability of globular proteins, CRC Crit. Rev. Biochem., 3, 1, 10.3109/10409237509102551
Pace, 1986, Determination and analysis of urea and guanidine hydrochloride denaturation curves, Methods Enzymol., 131, 266, 10.1016/0076-6879(86)31045-0
Santoro, 1988, Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants, Biochemistry, 27, 8063, 10.1021/bi00421a014
Morjana, 1993, Guanidine hydrochloride stabilization of a partially unfolded intermediate during the reversible denaturation of protein disulfide isomerase, Proc. Natl. Acad. Sci. USA, 90, 2107, 10.1073/pnas.90.6.2107
Tonello, 2004, Tyrosine-728 and glutamic acid-735 are essential for the metalloproteolytic activity of the lethal factor of Bacillus anthracis, Biochem. Biophys. Res. Commun., 313, 496, 10.1016/j.bbrc.2003.11.134
Myers, 1995, Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding, Protein Sci., 4, 2138, 10.1002/pro.5560041020
Ladokhin, 2000
Sancho, 2013, The stability of 2-state, 3-state and more-state proteins from simple spectroscopic techniques… plus the structure of the equilibrium intermediates at the same time, Arch. Biochem. Biophys., 531, 4, 10.1016/j.abb.2012.10.014
Tonello, 2003, The metalloproteolytic activity of the anthrax lethal factor is substrate-inhibited, J. Biol. Chem., 278, 40075, 10.1074/jbc.M306466200
Vivian, 2001, Mechanisms of tryptophan fluorescence shifts in proteins, Biophys. J., 80, 2093, 10.1016/S0006-3495(01)76183-8
Gkazonis, 2010, Purification and biophysical characterization of the core protease domain of anthrax lethal factor, Biochem. Biophys. Res. Commun., 396, 643, 10.1016/j.bbrc.2010.04.144
Dalkas, 2010, Conformational dynamics of the anthrax lethal factor catalytic center, Biochemistry, 49, 10767, 10.1021/bi1017792
Xu, 2012, The structure of Mlc titration factor A (MtfA/YeeI) reveals a prototypical zinc metallopeptidase related to anthrax lethal factor, J. Bacteriol., 194, 2987, 10.1128/JB.00038-12
Tsytlonok, 2013, The how׳s and why׳s of protein folding intermediates, Arch. Biochem. Biophys., 531, 14, 10.1016/j.abb.2012.10.006
England, 2011, Role of solvation effects in protein denaturation: from thermodynamics to single molecules and back, Annu. Rev. Phys. Chem., 62, 257, 10.1146/annurev-physchem-032210-103531
Hua, 2008, Urea denaturation by stronger dispersion interactions with proteins than water implies a 2-stage unfolding, Proc. Natl. Acad. Sci. USA, 105, 16928, 10.1073/pnas.0808427105
Jha, 2014, Kinetic evidence for a two-stage mechanism of protein denaturation by guanidinium chloride, Proc. Natl. Acad. Sci. USA, 111, 4856, 10.1073/pnas.1315453111
Lim, 2009, Urea, but not guanidinium, destabilizes proteins by forming hydrogen bonds to the peptide group, Proc. Natl. Acad. Sci. USA, 106, 2595, 10.1073/pnas.0812588106
Wang, 2014, The structural basis of urea-induced protein unfolding in β-catenin, Acta Crystallogr., D70, 2840
Candotti, 2013, Toward an atomistic description of the urea-denatured state of proteins, Proc. Natl. Acad. Sci. USA, 110, 5933, 10.1073/pnas.1216589110
McCall, 2000, Colorimetric and fluorimetric assays to quantitate micromolar concentrations of transition metals, Anal. Biochem., 284, 307, 10.1006/abio.2000.4706
Hunt, 1985, The use of 4-(2-pyridylazo)resorcinol in studies of zinc release from Escherichia coli aspartate transcarbamoylase, Anal. Biochem., 146, 150, 10.1016/0003-2697(85)90409-9
Siemann, 2002, IMP-1 metallo-β-lactamase: effect of chelators and assessment of metal requirement by electrospray mass spectrometry, Biochim. Biophys. Acta, 1571, 190, 10.1016/S0304-4165(02)00258-1
Säbel, 2009, A direct spectrophotometric method for the simultaneous determination of zinc and cobalt in metalloproteins using 4-(2-pyridylazo)resorcinol, Anal. Biochem., 391, 74, 10.1016/j.ab.2009.05.007
Mulligan, 2008, Denaturational stress induces formation of zinc-deficient monomers of Cu,Zn superoxide dismutase: implications for pathogenesis in amyotrophic lateral sclerosis, J. Mol. Biol., 383, 424, 10.1016/j.jmb.2008.08.024
Colvin, 2010, Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis, Metallomics, 2, 306, 10.1039/b926662c
Krężel, 2006, Zinc-buffering capacity of a eukaryotic cell at physiological pZn, J. Biol. Inorg. Chem., 11, 1049, 10.1007/s00775-006-0150-5