Influence of chemical denaturants on the activity, fold and zinc status of anthrax lethal factor

Biochemistry and Biophysics Reports - Tập 1 - Trang 68-77 - 2015
Suet Y. Lo1, Crystal E. Säbel2, Jonathan P.J. Mapletoft1, Stefan Siemann1
1Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
2Bharti School of Engineering, Laurentian University, Sudbury, Ontario, Canada

Tài liệu tham khảo

Mock, 2001, Anthrax, Annu. Rev. Microbiol., 55, 647, 10.1146/annurev.micro.55.1.647 Collier, 2003, Anthrax toxin, Annu. Rev. Cell Dev. Biol., 19, 45, 10.1146/annurev.cellbio.19.111301.140655 Young, 2007, Anthrax toxin: receptor binding, internalization, pore formation, and translocation, Annu. Rev. Biochem., 76, 243, 10.1146/annurev.biochem.75.103004.142728 Petosa, 1997, Crystal structure of the anthrax toxin protective antigen, Nature, 385, 833, 10.1038/385833a0 Thoren, 2011, The unfolding story of anthrax toxin translocation, Mol. Microbiol., 80, 588, 10.1111/j.1365-2958.2011.07614.x Feld, 2012, Ratcheting up protein translocation with anthrax toxin, Protein Sci., 21, 606, 10.1002/pro.2052 Collier, 2009, Membrane translocation by anthrax toxin, Mol. Aspects Med., 30, 413, 10.1016/j.mam.2009.06.003 Drum, 2002, Structural basis for the activation of anthrax adenylyl cyclase exotoxin by calmodulin, Nature, 415, 396, 10.1038/415396a Duesbery, 1998, Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor, Science, 280, 734, 10.1126/science.280.5364.734 Vitale, 1998, Anthrax lethal factor cleaves the N-terminus of MAPKKs and induces tyrosine/threonine phosphorylation of MAPKs in cultured macrophages, Biochem. Biophys. Res. Commun., 248, 706, 10.1006/bbrc.1998.9040 Levinsohn, 2012, Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome, PLoS Pathog., 8, e1002638, 10.1371/journal.ppat.1002638 Hellmich, 2012, Anthrax lethal factor cleaves mouse nlrp1b in both toxin-sensitive and toxin-resistant macrophages, PLoS One, 7, e49741, 10.1371/journal.pone.0049741 Chavarría-Smith, 2013, Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor, PLoS Pathog., 9, e1003452, 10.1371/journal.ppat.1003452 Pannifer, 2001, Crystal structure of the anthrax lethal factor, Nature, 414, 229, 10.1038/n35101998 Lipscomb, 1996, Recent advances in zinc enzymology, Chem. Rev., 96, 2375, 10.1021/cr950042j Krantz, 2004, Acid-induced unfolding of the amino-terminal domains of the lethal and edema factors of anthrax toxin, J. Mol. Biol., 344, 739, 10.1016/j.jmb.2004.09.067 Krantz, 2005, A phenylalanine clamp catalyzes protein translocation through the anthrax toxin pore, Science, 309, 777, 10.1126/science.1113380 Thoren, 2009, Lethal factor unfolding is the most force-dependent step of anthrax toxin translocation, Proc. Natl. Acad. Sci. USA, 106, 21555, 10.1073/pnas.0905880106 Feld, 2010, Structural basis for the unfolding of anthrax lethal factor by protective antigen oligomers, Nat. Struct. Mol. Biol., 17, 1383, 10.1038/nsmb.1923 Montpellier, 2013, Effect of pH on the catalytic function and zinc content of native and immobilized anthrax lethal factor, FEBS Lett., 587, 317, 10.1016/j.febslet.2012.11.035 Säbel, 2011, Preparation and characterization of cobalt-substituted anthrax lethal factor, Biochem. Biophys. Res. Commun., 416, 106, 10.1016/j.bbrc.2011.11.005 Säbel, 2010, Alkaline earth metals are not required for the restoration of the apoform of anthrax lethal factor to its holoenzyme state, Biochem. Biophys. Res. Commun., 403, 209, 10.1016/j.bbrc.2010.11.009 Lo, 2014, High metal substitution tolerance of anthrax lethal factor and characterization of its active copper-substituted analogue, J. Inorg. Biochem., 140, 12, 10.1016/j.jinorgbio.2014.06.009 Tonello, 2002, Screening inhibitors of anthrax lethal factor, Nature, 418, 386, 10.1038/418386a Pace, 1975, The stability of globular proteins, CRC Crit. Rev. Biochem., 3, 1, 10.3109/10409237509102551 Pace, 1986, Determination and analysis of urea and guanidine hydrochloride denaturation curves, Methods Enzymol., 131, 266, 10.1016/0076-6879(86)31045-0 Santoro, 1988, Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants, Biochemistry, 27, 8063, 10.1021/bi00421a014 Morjana, 1993, Guanidine hydrochloride stabilization of a partially unfolded intermediate during the reversible denaturation of protein disulfide isomerase, Proc. Natl. Acad. Sci. USA, 90, 2107, 10.1073/pnas.90.6.2107 Tonello, 2004, Tyrosine-728 and glutamic acid-735 are essential for the metalloproteolytic activity of the lethal factor of Bacillus anthracis, Biochem. Biophys. Res. Commun., 313, 496, 10.1016/j.bbrc.2003.11.134 Myers, 1995, Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding, Protein Sci., 4, 2138, 10.1002/pro.5560041020 Ladokhin, 2000 Sancho, 2013, The stability of 2-state, 3-state and more-state proteins from simple spectroscopic techniques… plus the structure of the equilibrium intermediates at the same time, Arch. Biochem. Biophys., 531, 4, 10.1016/j.abb.2012.10.014 Tonello, 2003, The metalloproteolytic activity of the anthrax lethal factor is substrate-inhibited, J. Biol. Chem., 278, 40075, 10.1074/jbc.M306466200 Vivian, 2001, Mechanisms of tryptophan fluorescence shifts in proteins, Biophys. J., 80, 2093, 10.1016/S0006-3495(01)76183-8 Gkazonis, 2010, Purification and biophysical characterization of the core protease domain of anthrax lethal factor, Biochem. Biophys. Res. Commun., 396, 643, 10.1016/j.bbrc.2010.04.144 Dalkas, 2010, Conformational dynamics of the anthrax lethal factor catalytic center, Biochemistry, 49, 10767, 10.1021/bi1017792 Xu, 2012, The structure of Mlc titration factor A (MtfA/YeeI) reveals a prototypical zinc metallopeptidase related to anthrax lethal factor, J. Bacteriol., 194, 2987, 10.1128/JB.00038-12 Tsytlonok, 2013, The how׳s and why׳s of protein folding intermediates, Arch. Biochem. Biophys., 531, 14, 10.1016/j.abb.2012.10.006 England, 2011, Role of solvation effects in protein denaturation: from thermodynamics to single molecules and back, Annu. Rev. Phys. Chem., 62, 257, 10.1146/annurev-physchem-032210-103531 Hua, 2008, Urea denaturation by stronger dispersion interactions with proteins than water implies a 2-stage unfolding, Proc. Natl. Acad. Sci. USA, 105, 16928, 10.1073/pnas.0808427105 Jha, 2014, Kinetic evidence for a two-stage mechanism of protein denaturation by guanidinium chloride, Proc. Natl. Acad. Sci. USA, 111, 4856, 10.1073/pnas.1315453111 Lim, 2009, Urea, but not guanidinium, destabilizes proteins by forming hydrogen bonds to the peptide group, Proc. Natl. Acad. Sci. USA, 106, 2595, 10.1073/pnas.0812588106 Wang, 2014, The structural basis of urea-induced protein unfolding in β-catenin, Acta Crystallogr., D70, 2840 Candotti, 2013, Toward an atomistic description of the urea-denatured state of proteins, Proc. Natl. Acad. Sci. USA, 110, 5933, 10.1073/pnas.1216589110 McCall, 2000, Colorimetric and fluorimetric assays to quantitate micromolar concentrations of transition metals, Anal. Biochem., 284, 307, 10.1006/abio.2000.4706 Hunt, 1985, The use of 4-(2-pyridylazo)resorcinol in studies of zinc release from Escherichia coli aspartate transcarbamoylase, Anal. Biochem., 146, 150, 10.1016/0003-2697(85)90409-9 Siemann, 2002, IMP-1 metallo-β-lactamase: effect of chelators and assessment of metal requirement by electrospray mass spectrometry, Biochim. Biophys. Acta, 1571, 190, 10.1016/S0304-4165(02)00258-1 Säbel, 2009, A direct spectrophotometric method for the simultaneous determination of zinc and cobalt in metalloproteins using 4-(2-pyridylazo)resorcinol, Anal. Biochem., 391, 74, 10.1016/j.ab.2009.05.007 Mulligan, 2008, Denaturational stress induces formation of zinc-deficient monomers of Cu,Zn superoxide dismutase: implications for pathogenesis in amyotrophic lateral sclerosis, J. Mol. Biol., 383, 424, 10.1016/j.jmb.2008.08.024 Colvin, 2010, Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis, Metallomics, 2, 306, 10.1039/b926662c Krężel, 2006, Zinc-buffering capacity of a eukaryotic cell at physiological pZn, J. Biol. Inorg. Chem., 11, 1049, 10.1007/s00775-006-0150-5