Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Ảnh hưởng của sợi nano xenluloza đến độ lưu biến, cấu trúc vi mô và cường độ của xỉ lò cao đã hoạt hóa kiềm: sự so sánh với xi măng Portland thông thường
Tóm tắt
Bài báo này báo cáo về ảnh hưởng của sợi nano xenluloza (CNFs) đến các thuộc tính trong trạng thái tươi của xỉ lò cao đã hoạt hóa kiềm (GGBS). Các sợi CNFs đã được chức năng hóa bề mặt (oxy hóa) được thêm vào các hệ nhũ tương nước GGBS đã hoạt hóa kiềm (bột thủy lực). Hành vi lưu biến của các hỗn hợp bột được so sánh với xi măng Portland thông thường (OPC) và được giải thích dựa trên sự tương tác giữa bề mặt CNF và khoáng chất, và tương tác giữa CNF và nước cũng như khả năng nở. Sự phân tán nước của các CNFs với các mức độ chức năng hóa bề mặt khác nhau dẫn đến việc hình thành các gel với độ nhớt và ứng suất giới hạn khác nhau, do tính ưa nước và đặc tính hấp thụ nước khác nhau của chúng. Khi tăng mức độ oxy hóa bề mặt của CNFs, độ nhớt của sự phân tán nước của CNF giảm và sự hấp thụ nước của CNF tăng, trong khi đó độ nhớt của bột tươi tăng lên do giảm lượng nước trộn sẵn có. Trong trạng thái cứng, các bột thủy lực cho thấy sự khác biệt về cường độ cơ học liên quan đến loại và lượng CNF ảnh hưởng đến tính thấm của ma trận, như được chứng minh bởi nghiên cứu cấu trúc vi mô được thực hiện bằng vi quang phổ X-ray. Sự hiện diện của lượng CNFs cao hơn gây ra sự hình thành các khối khí rỗng có thể hoạt động như những bộ tập trung ứng suất do khả năng nở của các sợi nano.
Từ khóa
#sợi nano xenluloza #xỉ lò cao #hoạt hóa kiềm #độ lưu biến #cấu trúc vi mô #cường độTài liệu tham khảo
Purdon AO (1940) The action of alkalis on blast-furnace slag. J Soc Chem Ind 59:191–202
Buchwald A, Vanooteghem M, Gruyaert E et al (2015) Purdocement: application of alkali-activated slag cement in Belgium in the 1950s. Mater Struct 48:501–511. https://doi.org/10.1617/s11527-013-0200-8
Shi C (2003) Corrosion resistance of alkali-activated slag cement. Adv Cem Res 15:77–81. https://doi.org/10.1680/adcr.2003.15.2.77
Madhuri K, Srinivasa Rao G (2018) Performance of alkali-activated slag concrete against sulphuric acid attack. Asian J Civ Eng. 19:451–461. https://doi.org/10.1007/s42107-018-0028-1
Aula M, Haapakangas J, Heikkilä A, Iljana M, Kemppainen A, Roininen J, Sulasalmi P, Visuri V-V (2012) Some environmental aspects of BF, EAF and BOF, University of Oulu, Faculty of Technology, Department of Process and Environmental Engineering (2012), ISBN 978-951-42-9832-5
Das B, Prakash S, Reddy PSR, Misra VN (2007) An overview of utilization of slag and sludge from steel industries. Resour Conserv Recycl 50:40–57. https://doi.org/10.1016/j.resconrec.2006.05.008
Walling SA, Bernal SA, Gardner LJ, Kinoshita H, Provis J (2018) Blast furnace slag-Mg(OH)2 cements activated by sodium carbonate. RSC Adv 8:23101–23118. https://doi.org/10.1039/c8ra03717e
Shi PKC, Roy D (2003) Alkali-Activated Cements and Concretes, 1st edn. CRC Press, London. https://doi.org/10.1201/9781482266900
Bernal SA, Provis JL, Fernández-jiménez A, Krivenko PV, Kavalerova E, Palacios M, Shi C (2014) Alkali activated materials. Springer, Netherlands. https://doi.org/10.1007/978-94-007-7672-2
Provis JL, Bernal SA (2014) Geopolymers and related alkali-activated materials. Annu Rev Mater Res 44:299–327. https://doi.org/10.1146/annurev-matsci-070813-113515
Awoyera P, Adesina A (2019) A critical review on application of alkali activated slag as a sustainable composite binder. Case Stud Constr Mater. https://doi.org/10.1016/j.cscm.2019.e00268
Garcia-Lodeiro I, Palomo A, Fernández-Jiménez A (2015) Crucial insights on the mix design of alkali-activated cement-based binders. Woodhead Publishing Limited, Cambridge. https://doi.org/10.1533/9781782422884.1.49
Palacios M, Puertas F (2005) Effect of superplasticizer and shrinkage-reducing admixtures on alkali-activated slag pastes and mortars. Cem Concr Res 35:1358–1367. https://doi.org/10.1016/j.cemconres.2004.10.014
Palacios M, Houst YF, Bowen P, Puertas F (2009) Adsorption of superplasticizer admixtures on alkali-activated slag pastes. Cem Concr Res 39:670–677. https://doi.org/10.1016/j.cemconres.2009.05.005
Mejdoub R, Hammi H, Suñol JJ, Khitouni M, A. M‘nif, S. Boufi, (2017) Nanofibrillated cellulose as nanoreinforcement in Portland cement: thermal, mechanical and microstructural properties. J Compos Mater 51:2491–2503. https://doi.org/10.1177/0021998316672090
Fu T, Moon RJ, Zavattieri P, Youngblood J, Weiss WJ (2017) Cellulose nanomaterials as additives for cementitious materials. Elsevier Ltd, Amsterdam. https://doi.org/10.1016/B978-0-08-100957-4.00020-6
Jiao L, Su M, Chen L, Wang Y, Zhu H, Dai H (2016) Natural cellulose nanofibers as sustainable enhancers in construction cement. PLoS ONE 11:1–13. https://doi.org/10.1371/journal.pone.0168422
Parveen S, Rana S, Fangueiro R, Paiva MC (2017) A novel approach of developing micro crystalline cellulose reinforced cementitious composites with enhanced microstructure and mechanical performance. Cem Concr Compos 78:146–161. https://doi.org/10.1016/j.cemconcomp.2017.01.004
Zhai L, Kim HC, Kim JW, Kang J, Kim J (2018) Elastic moduli of cellulose nanofibers isolated from various cellulose resources by using aqueous counter collision. Cellulose 25:4261–4268. https://doi.org/10.1007/s10570-018-1836-x
Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. https://doi.org/10.1039/c0cs00108b
Tarrés Q, Boufi S, Mutjé P, Delgado-Aguilar M (2017) Enzymatically hydrolyzed and TEMPO-oxidized cellulose nanofibers for the production of nanopapers: morphological, optical, thermal and mechanical properties. Cellulose 24:3943–3954. https://doi.org/10.1007/s10570-017-1394-7
Sun X, Wu Q, Lee S, Qing Y, Wu Y (2016) Cellulose nanofibers as a modifier for rheology, curing and mechanical performance of oil well cement. Sci Rep 6:1–9. https://doi.org/10.1038/srep31654
Tang Z, Huang R, Mei C, Sun X, Zhou D, Zhang X, Wu Q (2019) Influence of cellulose nanoparticles on rheological behavior of oilwell cement-water slurries. Materials (Basel) 12:1–14. https://doi.org/10.3390/ma12020291
Chakraborty S, Kundu SP, Roy A, Adhikari B, Majumder SB (2013) Effect of jute as fiber reinforcement controlling the hydration characteristics of cement matrix. Ind Eng Chem Res 52:1252–1260. https://doi.org/10.1021/ie300607r
Sun X, Wu Q, Ren S, Lei T (2015) Comparison of highly transparent all-cellulose nanopaper prepared using sulfuric acid and TEMPO-mediated oxidation methods. Cellulose 22:1123–1133. https://doi.org/10.1007/s10570-015-0574-6
Fukuzumi H, Saito T, Isogai A (2013) Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydr Polym 93:172–177. https://doi.org/10.1016/j.carbpol.2012.04.069
Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials (Basel) 6:1745–1766. https://doi.org/10.3390/ma6051745
Tang Z, Li W, Lin X, Xiao H, Miao Q, Huang L, Chen L, Wu H (2017) TEMPO-Oxidized cellulose with high degree of oxidation. Polymers (Basel) 9:3–4. https://doi.org/10.3390/polym9090421
Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85. https://doi.org/10.1039/c0nr00583e
Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8:2485–2491. https://doi.org/10.1021/bm0703970
Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15:425–433. https://doi.org/10.1007/s10570-007-9184-2
Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromol 11:1696–1700. https://doi.org/10.1021/bm100214b
Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromol 10:1992–1996. https://doi.org/10.1021/bm900414t
Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromol 7:1687–1691. https://doi.org/10.1021/bm060154s
Jönsson B, Wennerström H, Nonat A, Cabane B (2004) Onset of cohesion in cement paste. Langmuir 20:6702–6709. https://doi.org/10.1021/la0498760
Lesko S, Lesniewska E, Nonat A, Mutin JC, Goudonnet JP (2001) Investigation by atomic force microscopy of forces at the origin of cement cohesion. Ultramicroscopy 86:11–21. https://doi.org/10.1016/S0304-3991(00)00091-7
Isabelle ANP, Plassard C, Lesniewska E, Labbez C, Jönsson B (2007) Nanoscale investigation of particle interactions at the origin of the cohesion of cement. In: Proceedings of the 12th international congress on the chemistry of cement, Montreal
Balea A, Fuente E, Blanco A, Negro C (2019) Nanocelluloses: natural-based materials for fiber-reinforced cement composites. A critical review. Polymers (Basel). https://doi.org/10.3390/polym11030518
Sun X, Wu Q, Zhang J, Qing Y, Wu Y, Lee S (2017) Rheology, curing temperature and mechanical performance of oil well cement: combined effect of cellulose nanofibers and graphene nano-platelets. Mater Des 114:92–101. https://doi.org/10.1016/j.matdes.2016.10.050
Ahmad D, van den Boogaert I, Miller J, Presswell R, Jouhara H (2018) Hydrophilic and hydrophobic materials and their applications. Energy Sources Part A Recover Util Environ Eff 40:2686–2725. https://doi.org/10.1080/15567036.2018.1511642
Ardanuy M, Claramunt J, García-Hortal JA, Barra M (2011) Fiber-matrix interactions in cement mortar composites reinforced with cellulosic fibers. Cellulose 18:281–289. https://doi.org/10.1007/s10570-011-9493-3
Hisseine OA, Omran AF, Tagnit-Hamou A (2018) Influence of cellulose filaments on cement paste and concrete. J Mater Civ Eng 30:1–14. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002287
Knill CJ, Kennedy JF (2002) Degradation of cellulose under alkaline conditions. Carbohydr Polym 51:281–300. https://doi.org/10.1016/S0144-8617(02)00183-2
Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. https://doi.org/10.1177/004051755902901003
Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10. https://doi.org/10.1186/1754-6834-3-10
Wulandari WT, Rochliadi A, Arcana IM (2016) Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/107/1/012045
Xu X, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009. https://doi.org/10.1021/am302624t
Bellotto M, Dalconi MC, Contessi S, Garbin E, Artioli G (2019) Formulation, performance, hydration and rheological behavior of ‘just add water’ slag-based binders. In: Proceedings of the first international conference on innovation in low-carbon cement and concrete technology, pp 3–6.
Provis JL (2018) Alkali-activated materials. Cem Concr Res 114:40–48. https://doi.org/10.1016/j.cemconres.2017.02.009
Valentini L, Contessi S, Dalconi MC, Zorzi F, Garbin E (2018) Alkali-activated calcined smectite clay blended with waste calcium carbonate as a low-carbon binder. J Clean Prod 184:41–49. https://doi.org/10.1016/j.jclepro.2018.02.249
Feldkamp LA (1984) Practical cone-beam algorithm Sfrdr I _ f. America (NY) 1:612–619
Morgavi D, Valentini L, Porreca M, Zucchini A, Di Michele A, Ielpo M, Costa A, Rossi S, Landi P, Perugini D (2018) Volcanic ash aggregation enhanced by seawater interaction: the case of the Secche Di Lazzaro phreatomagmatic deposit (stromboli). Ann Geophys 61:1–18. https://doi.org/10.4401/ag-7874
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019
Huang LK, Wang MJJ (1995) Image thresholding by minimizing the measures of fuzziness. Pattern Recognit 28:41–51. https://doi.org/10.1016/0031-3203(94)E0043-K
E.C. for Standardization (2005) EN 196-1: methods of testingcement—part 1: determination of strength
Panizza M, Natali M, Garbin E, Ducman V, Tamburini S (2020) Optimization and mechanical-physical characterization of geopolymers with construction and demolition waste (CDW) aggregates for construction products. Constr Build Mater 264:120158. https://doi.org/10.1016/j.conbuildmat.2020.120158
Rao MA (2007) Rheology of fluid and semisolid foods: principles and applications, 2nd edn. Springer, Boston. https://doi.org/10.1007/978-0-387-70930-7
Shenoy AV (1999) Rheology of filled polymer systems, 1st edn. Springer, Pune. https://doi.org/10.1007/978-94-015-9213-0
Dimens M (1906) A new determination of molecular. Ann Phys 19(4):317–381, (19:289–306, 1911)
Krieger IM, Dougherty TJ (1959) A mechanism for non-newtonian flow in suspensions of rigid spheres. Trans Soc Rheol 3:137–152. https://doi.org/10.1122/1.548848
Wessel R, Ball RC (1992) Fractal aggregates and gels in shear flow. Phys Rev A 46:3008–3011. https://doi.org/10.1103/PhysRevA.46.R3008
Shi D, Ye J, Zhang W (2020) Effects of activator content on properties, mineralogy, hydration and microstructure of alkali-activated materials synthesized from calcium silicate slag and ground granulated blast furnace slag. J Build Eng 32:101791. https://doi.org/10.1016/j.jobe.2020.101791
Vance K, Dakhane A, Sant G, Neithalath N (2014) Observations on the rheological response of alkali activated fly ash suspensions: the role of activator type and concentration. Rheol Acta 53:843–855. https://doi.org/10.1007/s00397-014-0793-z
Hojczyk OWM (2011) Melt-rheological behavior of high-solid cement-in-polymer dispersions. J Appl Polym Sci 119:565–571. https://doi.org/10.1002/app.32676
Park JY, Park CW, Han SY, Kwon GJ, Kim NH, Lee SH (2019) Effects of pH on nanofibrillation of TEMPO-oxidized paper mulberry bast fibers. Polymers (Basel). https://doi.org/10.3390/polym11030414
Claramunt J, Ventura H, Toledo Filho RD, Ardanuy M (2019) Effect of nanocelluloses on the microstructure and mechanical performance of CAC cementitious matrices. Cem Concr Res 119:64–76. https://doi.org/10.1016/j.cemconres.2019.02.006