Influence of alkaline silicon-based amendment and incorporated with biochar on the growth and heavy metal translocation and accumulation of vetiver grass (Vetiveria zizanioides) grown in multi-metal-contaminated soils

Springer Science and Business Media LLC - Tập 19 Số 5 - Trang 2277-2289 - 2019
Jing Mu1,2,3, Zhengyi Hu1,4,3, Lijuan Huang1,2,3, Sichen Tang1, Peter E. Holm2,3
1College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
2Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
3Sino-Danish Center for Education and Research (SDC), Beijing, China
4Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abaga NOZ, Dousset S, Mbengue S, Munier-Lamy C (2014) Is vetiver grass of interest for the remediation of Cu and Cd to protect marketing gardens in Burkina Faso? Chemosphere 113:42–47

Adrees M, Ali S, Rizwan M, Zia-ur-Rehman M, Ibrahim M, Abbas F, Farid M, Qayyum MF, Irshad MK (2015) Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicol Environ Saf 119:186–197

Ahmad M, Lee SS, Lim JE, Lee SE, Cho JS, Moon DH, Hashimoto Y, Ok YS (2014) Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions. Chemosphere 95:433–441

Banerjee R, Goswami P, Pathak K, Mukherjee A (2016) Vetiver grass: an environment clean-up tool for heavy metal contaminated iron ore mine-soil. Ecol Eng 90:25–34

Beesley L, Marmiroli M (2011) The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ Pollut 159:474–480

Beesley L, Inneh OS, Norton GJ, Moreno-Jimenez E, Pardo T, Clemente R, Dawson JJ (2014) Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environ Pollut 186:195–202

Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K (2014) Remediation of heavy metal(loid)s contaminated soils-to mobilize or to immobilize? J Hazard Mater 266:141–166

Chang YT, Hsi HC, Hseu ZY, Jheng SL (2013) Chemical stabilization of cadmium in acidic soil using alkaline agronomic and industrial by-products. J Environ Sci Health A 48(13):1748–1756

Chen YH, Shen ZG, Li XD (2004) The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Appl Geochem 19:1553–1565

Chiu KK, Ye ZH, Wong MH (2005) Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents. Chemosphere 60:1365–1375

Chiu KK, Ye ZH, Wong MH (2006) Growth of Vetiveria zizanioides and Phragmities australis on Pb/Zn and Cu mine tailings amended with manure compost and sewage sludge: a greenhouse study. Bioresour Technol 97:158–170

Christou A, Theologides CP, Costa C, Kalavrouziotis IK, Varnavas SP (2017) Assessment of toxic heavy metals concentrations in soils and wild and cultivated plant species in Limni abandoned copper mining site, Cyprus. J Geochem Explor 178:16–22

Galal TM, Shehata HS (2015) Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecol Indic 48:244–251

Gautam M, Agrawal M (2017) Phytoremediation of metals using vetiver ( Chrysopogon zizanioides (L.) Roberty) grown under different levels of red mud in sludge amended soil. J Geochem Explor 182:218–227

Ghosh M, Paul J, Jana A, De A, Mukherjee A (2015) Use of the grass, Vetiveria zizanioides (L.) Nash for detoxification and phytoremediation of soils contaminated with fly ash from thermal power plants. Ecol Eng 74:258–265

Gu HH, Qiu H, Tian T, Zhan SS, Deng THB, Chaney RL, Wang SZ, Tang YT, Morel JL, Qiu RL (2011) Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil. Chemosphere 83:1234–1240

Lee SH, Ji W, Lee WS, Koo N, Koh IH, Kim MS, Park JS (2014) Influence of amendments and aided phytostabilization on metal availability and mobility in Pb/Zn mine tailings. J Environ Manag 139:15–21

Li H, Dong X, Silva EB, Oliveira LM, Chen Y, Ma LQ (2017) Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere 178:466–478

Lim JE, Ahmad M, Lee SS, Shope CL, Hashimoto Y, Kim KR, Usman ARA, Yang JE, Ok YS (2013) Effects of lime-based waste materials on immobilization and phytoavailability of cadmium and lead in contaminated soil. Clean Soil Air Water 41(12):1235–1241

Lu RK (1999) Analytical methods of soil agricultural chemistry. China Agricultural Science and Technology Press, Beijing

Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li R, Zhang Z (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf 126:111–121

Meeinkuirt W, Kruatrachue M, Tanhan P, Chaiyarat R, Pokethitiyook P (2013) Phytostabilization potential of Pb mine tailings by two grass species, Thysanolaena maxima and Vetiveria zizanioides. Water Air Soil Pollut 224:1750

Melo LCA, Puga AP, Coscione AR, Beesley L, Abreu CA, Camargo OA (2016) Sorption and desorption of cadmium and zinc in two tropical soils amended with sugarcane-straw-derived biochar. J Soils Sediments 16:226–234

Mirza N, Mubarak H, Chai LY, Yong W, Khan MJ, Khan QU, Hashmi MZ, Farooq U, Sarwar R, Yang ZH (2017) The potential use of Vetiveria zizanioides for the phytoremediation of antimony, arsenic and their co-contamination. Bull Environ Contam Toxicol 99:511–517

Mitchell K, Trakal L, Sillerova H, Avelar-González FJ, Guerrero-Barrera AL, Hough R, Beesley L (2018) Mobility of As, Cr and Cu in a contaminated grassland soil in response to diverse organic amendments; a sequential column leaching experiment. Appl Geochem 88:95–102

Mohamed I, Zhang GS, Li ZG, Liu Y, Chen F, Dai K (2015) Ecological restoration of an acidic Cd contaminated soil using bamboo biochar application. Ecol Eng 84:67–76

Novozamsky I, .Eck R, Houba VJG (2008) A rapid determination of silicon in plant material. Commun Soil Sci Plan 15:205–211

Radziemska M, Gusiatin ZM, Bilgin A (2017) Potential of using immobilizing agents in aided phytostabilization on simulated contamination of soil with lead. Ecol Eng 102:490–500

Rotkittikhun P, Chaiyarat R, Kruatrachue M, Pokethitiyook P, Baker AJM (2007) Growth and lead accumulation by the grasses Vetiveria zizanioides and Thysanolaena maxima in lead-contaminated soil amended with pig manure and fertilizer: a glasshouse study. Chemosphere 66:45–53

Song XD, Xue XY, Chen DZ, He PJ, Dai XH (2014) Application of biochar from sewage sludge to plant cultivation: influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation. Chemosphere 109:213–220

USEPA (1996) USEPA-3050B acid digestion of sediments sludge and soils; USEPA-3052 acid digestion of siliceous and organically based material. US Environmental Protection Agency, Washington, DC

Wei B, Yang L (2010) A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem J 94:99–107

Wen J, Yi Y, Zeng G (2016) Effects of modified zeolite on the removal and stabilization of heavy metals in contaminated lake sediment using BCR sequential extraction. J Environ Manag 178:63–69

Xu P, Sun CX, Ye XZ, Xiao WD, Zhang Q, Wang Q (2016) The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a cd and Pb polluted soil. Ecotoxicol Environ Saf 132:94–100

Yang B, Shu WS, Ye ZH, Lan CY, Wong MH (2003) Growth and metal accumulation in vetiver and two Sesbania species on lead/zinc mine tailings. Chemosphere 52:1593–1600

Yao A, Wang Y, Ling X, Chen Z, Tang Y, Qiu H, Ying R, Qiu R (2017) Effects of an iron-silicon material, a synthetic zeolite and an alkaline clay on vegetable uptake of As and Cd from a polluted agricultural soil and proposed remediation mechanisms. Environ Geochem Health 39:353–367

Zama EF, Reid BJ, Arp HPH, Sun GX, Yuan HY, Zhu YG (2018) Advances in research on the use of biochar in soil for remediation: a review. J Soils Sediments 18:2433–2450

Zhang G, Guo X, Zhao Z, He Q, Wang S, Zhu Y, Yan Y, Liu X, Sun K, Zhao Y, Qian T (2016) Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil. Environ Pollut 218:513–522

Zheng RL, Cai C, Liang JH, Huang Q, Chen Z, Huang YZ, Arp HPH, Sun GX (2012) The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, As in rice (Oryza sativa L.) seedlings. Chemosphere 89:856–862

Zhou YF, Haynes RJ, Naidu R (2012) Use of inorganic and organic wastes for in situ immobilisation of Pb and Zn in a contaminated alkaline soil. Environ Sci Pollut Res 19:1260–1270