Ảnh hưởng của các phương pháp xử lý lão hóa lên các bộ phận thép không gỉ 17–4 PH được sản xuất bằng công nghệ chế tạo thêm vật liệu bằng phương pháp ép đùn

Alessandro Pellegrini1, Fulvio Lavecchia1, Maria Grazia Guerra1, Luigi Maria Galantucci1
1Department of Mechanical, Mathematic and Management Engineering, Polytechnic of Bari, Bari, Italy

Tóm tắt

Các vấn đề quan trọng nhất của các bộ phận được sản xuất bằng công nghệ chế tạo thêm vật liệu qua phương pháp ép đùn là tính chất cơ học thấp hơn so với hiệu suất vật liệu tiêu chuẩn, sự tồn tại của lỗ rỗng do phương pháp sản xuất, và những vấn đề liên quan đến giao diện giữa các lớp và thanh. Trong bối cảnh này, các xử lý nhiệt có thể được xem như một giải pháp hiệu quả để điều chỉnh hành vi của vật liệu cho các lĩnh vực ứng dụng khác nhau, đặc biệt là khi sử dụng thép không gỉ có khả năng cứng hóa bằng sự kết tủa. Trong công trình này, các phương pháp xử lý lão hóa đã được thực hiện trên các bộ phận được tạo ra bằng ba quy trình dựa trên ép đùn khác nhau: Chế tạo thêm qua khuếch tán nguyên tử, lắng đọng kim loại liên kết, và chế tạo sợi dẻo nung chảy. Hai điều kiện lão hóa trực tiếp (H900 và H1150) đã được xem xét với mục tiêu so sánh phản ứng của tính chất trong hai điều kiện tương phản của giai đoạn lão hóa tối ưu và lão hóa quá mức. Các thử nghiệm độ cứng cho thấy lão hóa H900 đã có ảnh hưởng đáng kể đến độ cứng (tăng tối đa 52%), và độ rỗng (giảm 34,3% so với tình trạng sau khi sintering). Ngược lại, lão hóa H1150 đã làm giảm độ cứng (giảm tối đa 18%) và độ rỗng (giảm tối đa 32,2%). Những khác biệt đáng kể giữa cấu trúc vi mô do kích thước hạt và δ-ferrite đã được minh họa. Một bài kiểm tra thống kê đã được đưa vào để làm nổi bật tốt hơn ảnh hưởng của xử lý nhiệt lên các tính chất được nghiên cứu.

Từ khóa

#thép không gỉ #xử lý lão hóa #chế tạo thêm vật liệu #ép đùn #tính chất cơ học #độ cứng #độ rỗng

Tài liệu tham khảo

Vunnam S, Saboo A, Sudbrack C et al (2019) Effect of powder chemical composition on the as-built microstructure of 17–4 PH stainless steel processed by selective laser melting. Addit Manuf 30:100876. https://doi.org/10.1016/j.addma.2019.100876 Sung HJ, Ha TK, Ahn S et al (2002) Powder injection molding of a 17–4 PH stainless steel and the effect of sintering temperature on its microstructure and mechanical properties. J Mater Process Technol 130–131:321–327. https://doi.org/10.1016/S0924-0136(02)00739-2 Meredith SD, Zuback JS, Keist JS et al (2018) Impact of composition on the heat treatment response of additively manufactured 17–4 PH grade stainless steel. Mater Sci Eng A 738:44–56. https://doi.org/10.1016/j.msea.2018.09.066 Yeli G, Auger MA, Wilford K et al (2017) Sequential nucleation of phases in a 17–4PH steel: microstructural characterisation and mechanical properties. Acta Mater 125:38–49. https://doi.org/10.1016/j.actamat.2016.11.052 ISO/ASTM52900–15 (2015) Standard Terminology for additive manufacturing – general principles – terminology (ASTM52900). Int Organ Stand Geneva, Switz i:1–9 German RM (2018) MIM 17–4 PH stainless steel: processing, properties and best practice. Powder Inject Mould Int 12:49–76 Sadaf M, Bragaglia M, Nanni F (2021) A simple route for additive manufacturing of 316L stainless steel via fused filament fabrication. J Manuf Process 67:141–150. https://doi.org/10.1016/j.jmapro.2021.04.055 Singh G, Missiaen J, Bouvard D et al (2021) Copper extrusion 3D printing using metal injection moulding feedstock: analysis of process parameters for green density and surface roughness optimization. Addit Manuf 38:101778. https://doi.org/10.1016/j.addma.2020.101778 Gonzalez-Gutierrez J, Arbeiter F, Schlauf T et al (2019) Tensile properties of sintered 17–4PH stainless steel fabricated by material extrusion additive manufacturing. Mater Lett 248:165–168. https://doi.org/10.1016/j.matlet.2019.04.024 Godec D, Cano S, Holzer C (2020) Optimization-of-the-3D-printing-parameters-for-tensile-properties-of-specimens-produced-by-fused-filament-fabrication-of-174PH-stainless-steel2020MaterialsOpen-Access.pdf. Materials (Basel) 13:. https://doi.org/10.3390/ma13030774 Galati M, Minetola P (2019) Analysis of density, roughness, and accuracy of the atomic diffusion additive manufacturing (ADAM) process for metal parts. Materials (Basel) 12:. https://doi.org/10.3390/ma1224122 Suwanpreecha C, Seensattayawong P, Vadhanakovint V et al (2021) Influence of specimen layout on 17–4PH (AISI 630) alloys fabricated by low-cost additive manufacturing. Metall Mater Trans A Phys Metall Mater Sci 52:1999–2009. https://doi.org/10.1007/s11661-021-06211-x Parenti P, Puccio D, Colosimo BM et al (2022) A new solution for assessing the printability of 17–4 PH gyroids produced via extrusion-based metal AM. J Manuf Process 74:557–572. https://doi.org/10.1016/j.jmapro.2021.12.043 Watson A, Belding J, Ellis BD (2020) Characterization of 17–4 PH processed via bound metal deposition (BMD). Miner Met Mater Ser 205–216. https://doi.org/10.1007/978-3-030-36296-6_19 Lavecchia F, Pellegrini A, Galantucci LM (2023) Comparative study on the properties of 17–4 PH stainless steel parts made by metal fused filament fabrication process and atomic diffusion additive manufacturing. Rapid Prototyp J 29:393–407. https://doi.org/10.1108/RPJ-12-2021-0350 ASTM International (2013) Standard specification for hot-rolled and cold-finished age-hardening stainless steel. 1–8. https://doi.org/10.1520/A0564 Pasebani S, Ghayoor M, Badwe S et al (2018) Effects of atomizing media and post processing on mechanical properties of 17–4 PH stainless steel manufactured via selective laser melting. Addit Manuf 22:127–137. https://doi.org/10.1016/j.addma.2018.05.011 Murr LE, Martinez E, Hernandez J et al (2012) Microstructures and properties of 17–4 PH stainless steel fabricated by selective laser melting. J Mater Res Technol 1:167–177. https://doi.org/10.1016/S2238-7854(12)70029-7 LeBrun T, Nakamoto T, Horikawa K et al (2015) Effect of retained austenite on subsequent thermal processing and resultant mechanical properties of selective laser melted 17–4 PH stainless steel. Mater Des 81:44–53. https://doi.org/10.1016/j.matdes.2015.05.026 Sabooni S, Chabok A, Feng SC et al (2021) Laser powder bed fusion of 17–4 PH stainless steel: a comparative study on the effect of heat treatment on the microstructure evolution and mechanical properties. Addit Manuf 46:102176. https://doi.org/10.1016/j.addma.2021.102176 Hsu TH, Chang YJ, Huang CY et al (2019) Microstructure and property of a selective laser melting process induced oxide dispersion strengthened 17–4 PH stainless steel. J Alloys Compd 803:30–41. https://doi.org/10.1016/j.jallcom.2019.06.289 Nezhadfar PD, Shrestha R, Phan N et al (2019) Fatigue behavior of additively manufactured 17–4 PH stainless steel: synergistic effects of surface roughness and heat treatment. Int J Fatigue 124:188–204. https://doi.org/10.1016/j.ijfatigue.2019.02.039 Shaffer DJ, Wilson-Heid AE, Keist JS et al (2021) Impact of retained austenite on the aging response of additively manufactured 17–4 PH grade stainless steel. Mater Sci Eng A 817:141363. https://doi.org/10.1016/j.msea.2021.141363 Zhou T, Zheng T, Yildiz AB, et al (2022) Microstructure control during deposition and post-treatment to optimize mechanical properties of wire-arc additively manufactured 17–4 PH stainless steel. Addit Manuf 58:. https://doi.org/10.1016/j.addma.2022.103047 Chae H, Luo MY, Huang EW et al (2022) Unearthing principal strengthening factors tuning the additive manufactured 15–5 PH stainless steel. Mater Charact 184:111645. https://doi.org/10.1016/j.matchar.2021.111645 Huber D, Stich P, Fischer A (2021) Heat treatment of 17–4 PH stainless steel produced by binder jet additive manufacturing (BJAM) from N2-atomized powder. Prog Addit Manuf. https://doi.org/10.1007/s40964-021-00224-z Hsiao CN, Chiou CS, Yang JR (2002) Aging reactions in a 17–4 PH stainless steel. Mater Chem Phys 74:134–142. https://doi.org/10.1016/S0254-0584(01)00460-6 Viswanathan UK, Banerjee S, Krishnan R (1988) Effects of aging on the microstructure of 17–4 PH stainless steel. Mater Sci Eng 104:181–189. https://doi.org/10.1016/0025-5416(88)90420-X Sathyanath A, Meena A (2022) Microstructure-induced high-strain-rate deformation behavior of heat-treated 17–4 PH stainless steel. J Mater Eng Perform. https://doi.org/10.1007/s11665-022-07065-z Condruz MR, Paraschiv A, Puscasu C (2018) Heat treatment influence on hardness and microstructure of ADAM manufactured 17–4 Ph. Turbo V:4–11 Bouaziz MA, Djouda JM, Chemkhi M et al (2021) Heat treatment effect on 17–4PH stainless steel manufactured by atomic diffusion additive manufacturing (ADAM). Procedia CIRP 104:935–938. https://doi.org/10.1016/j.procir.2021.11.157 Abe Y, Kurose T, Santos MVA et al (2021) Effect of layer directions on internal structures and tensile properties of 17–4ph stainless steel parts fabricated by fused deposition of metals. Materials (Basel) 14:1–12. https://doi.org/10.3390/ma14020243 Galantucci LM, Guerra MG, Dassisti M et al (2019) Additive manufacturing: new trends in the 4th Industrial Revolution. Springer International Publishing. https://doi.org/10.1007/978-3-030-18180-2_12 Gabilondo M, Cearsolo X, Arrue M, et al (2022) Influence of build orientation, chamber temperature and infill pattern on mechanical properties of 316L Parts Manufactured by Bound Metal Deposition. Materials (Basel) 15:. https://doi.org/10.3390/ma15031183 Enrique PD, DiGiovanni C, Mao N et al (2021) Resistance is not futile: the use of projections for resistance joining of metal additively and conventionally manufactured parts. J Manuf Process 66:424–434. https://doi.org/10.1016/j.jmapro.2021.04.035 Pellegrini A, Palmieri ME, Guerra MG (2022) Evaluation of anisotropic mechanical behaviour of 316L parts realized by metal fused filament fabrication using digital image correlation. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-022-09303-z BASF 3D Printing Solutions (2021) BASF Ultrafuse 17–4 PH. https://www.sculpteo.com/en/materials/fdm-material/ultrafuse-17-4-ph/. Accessed 13 Dec 2021 Pottery G, Mangone A, Caggiani MC, et al (2023) A possible natural and inexpensive substitute for lapis lazuli in the Frederick II era: the finding of haüyne in blue lead-tin. Molecules 28:. 10.3390/ molecules28041546 Markforged (2018) 17–4 PH stainless steel. https://markforged.com/materials/metals/17-4-ph-stainless-steel. Accessed 22 Apr 2021 Desktop Metal Inc. (2021) 17–4PH-stainless-steel. https://www.desktopmetal.com/uploads/BMD-SPC-MDS-17-4ph-211112_c.pdf. Accessed 21 Jan 2022 Singh G, Missiaen JM, Bouvard D, et al (2021) Additive manufacturing of 17–4 PH steel using metal injection molding feedstock: analysis of 3d extrusion printing, debinding and sintering. addit manuf 47:. https://doi.org/10.1016/j.addma.2021.102287 Wu Y, German RM, Blaine D et al (2002) Effects of residual carbon content on sintering shrinkage, microstructure and mechanical properties of injection molded 17–4 PH. J Mater Sci 37:3573–3583. https://doi.org/10.1023/A:1016532418920 Caballero A, Ding J, Ganguly S et al (2019) Wire + arc additive manufacture of 17–4 PH stainless steel: effect of different processing conditions on microstructure, hardness, and tensile strength. J Mater Process Technol 268:54–62. https://doi.org/10.1016/j.jmatprotec.2019.01.007 Wu MW, Huang ZK, Tseng CF et al (2015) Microstructures, mechanical properties, and fracture behaviors of metal-injection molded 17–4PH stainless steel. Met Mater Int 21:531–537. https://doi.org/10.1007/s12540-015-4369-y Huber D, Vogel L, Fischer A (2021) The effects of sintering temperature and hold time on densification, mechanical properties and microstructural characteristics of binder jet 3D printed 17–4 PH stainless steel. Addit Manuf 46:102114. https://doi.org/10.1016/j.addma.2021.102114