Influence of a Low-Temperature GaAs Dislocation Filter on the Perfection of GaAs/Si Layers

D. S. Abramkin1,2, M. O. Petrushkov1, E. A. Emel’yanov1, M. A. Putyato1, B. R. Semyagin1, A. V. Vasev1, M. Yu. Esin1, I. D. Loshkarev1, A. K. Gutakovskii1,2, V. V. Preobrazhenskii1, T. S. Shamirzaev1,2,3
1Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Novosibirsk State University, Novosibirsk, Russia
3Ural Federal University, Ekaterinburg, Russia

Tóm tắt

The influence of dislocation filters based on low-temperature layers (LT) of GaAs and postgrowth annealing on the perfection of GaAs/Si heterostructures is discussed. It is shown that LT-GaAs layers reduce the density of threading dislocations and surface roughness. Post-growth annealing at a temperature of 650 °C reduces the concentration of nonradiative recombination centers in GaAs/Si layers to a level close to the level in GaAs layers grown on a matched substrate.

Tài liệu tham khảo

D. Thomson, A. Zilkie, J. E. Bowers, et al. “Roadmap on Silicon Photonics,” Journ. Opt. 18 (7), 073003 (2016). Yu. B. Bolkhovityanov and O. P. Pchelyakov, “GaAs Epitaxy on Si Substrates: Modern Status of Research and Engineering,” Uspekhi Fiz. Nauk 178 (5), 459–480 (2008). Y. Okada and Y. Tokumaru, “Precise Determination of the Lattice Parameter and Thermal Expansion of Silicon between 300 and 1500 K,” J. Appl. Phys. 56 (2), 314–320 (1984). S. I. Novikova, “Investigation of the Thermal Expansion of GaAs and ZnSe,” Fiz. Tverd. Tela 3 (1), 178–181 (1961). K. Akahori, G. Wang, K. Okumura, et al., “Improvement of the MOCVD-Grown InGaP-on-Si towards High-Efficiency Solar Cell Application,” Solar Energy Mater. Solar Cells. 66 (1–4), 593–598 (2001). J. W. Lee, H. Shichijo, H. L. Tsai, and R. J. Matyi, “Defect Reduction by Thermal Annealing of GaAs Epitaxy on Si Substrates,” Appl. Phys. Lett. 50 (31), 31–33 (1987). M. Yamaguchi, “Dislocation of the Impregnation of Heteroepitaxial III-V Compound Films on Si Substrates for Optical Devices,” J. Mater. Res. 6 (2), 376–384 (1991). M. Akiyama, Y. Kawarada, and K. Kaminishi, “Growth of Single Domain GaAs Layer on (100) Oriented Si Substrate by MOCVD,” Jap. J. Appl. Phys. 23, Pt. 2, (11), L843 (1984). D. A. Vinokurov, V. M. Lantratov, M. A. Sinitsyn, et al., “Properties and Features of Crystallization of Epitaxial GaAs Layers Grown on Si(100) Substrates by Two-Stage Precipitation in the Metalorganic Hydride Process,” Fiz. Tekh. Poluprovodn. 25 (6), 1022–1029 (1991). T. Soga and S. Hattoriet, “Characterization of Epitaxially Grown GaAs on Si Substrates with III–V Compounds Intermediate Layers by Metalorganic Chemical Vapor Deposition,” J. Appl. Phys. 57 (10), 4578–4582 (1985). M. Yamaguchi, M. Sugo, and Y. Itoh, “Misfit Stress Dependence of Dislocation Density Reduction in GaAs Films on Si Substrates Grown by Strained-Layer Superlattices,” Appl. Phys. Lett. 54, 2568–2570 (1989). C. C. Phua, T. C. Chong, and W. S. Lau, “Improved Crystalline Quality of Molecular Beam Epitaxy Grown GaAs-on-Si Epilayer Through the Use of Low-Temperature GaAs Intermediate Layer,” Jap. J. Appl. Phys. 33, Pt. 2, (3B), L405–L408 (1994). M. O. Petrushkov, M. A. Putyato, A. K. Gutakovsky, et al., “Impact of LT-GaAs Layers on Crystalline Properties of the Epitaxial GaAs Films Grown by MBE on Si Substrates,” J. Phys. Conf. Ser. 741 (1), 012020 (2016). J. W. Matthews, “Accommodation of Misfit Across the Interface between Single-Crystal Films of Various Face-Centred Cubic Metals,” Phil. Mag. 13 (126), 1207–1221 (1966). C. G. Van de Walle, “Band Lineups and Deformation Potentials in the Model-Solid Theory,” Phys. Rev. B 39, 1871–1884 (1989). H. C. Casey, D. D. Sell, and K. W. Wecht, “Concentration Dependence of the Absorption Coefficient for n-and p-Type GaAs between 1.3 and 1.6 eV,” J. Appl. Phys. 46 (1), 250–257 (1975).