Influence of Vapor Phase Pretreatments of Epoxy Surfaces on the Nucleation of MOCVD Copper Thin Films
Tóm tắt
Vapor phase pretreatments of epoxy composite material reinforced with carbon fibers were carried out prior to the growth of Cu thin films by metal-organic chemical vapor deposition (MOCVD) using Cu (hfa)(COD) as copper precursor. These dry surface oxidation processes include H2O/UV, O2/UV and O2/Plasma treatments. Oxygen plasma method is the most efficient to oxidize the surface and it has the greatest effect to improve the wettability of epoxy samples. As a consequence, the higher hydrophilicity of the plasma-modified epoxy surface induces a higher nucleation density in the Cu film. Furthermore, this treatment reduces drastically the induction period observed for the growth of the metal. Even though the O2/UV pretreatment incorporates almost the same amount of oxygen in the epoxy surface than the plasma treatment, the functional groups are different, as revealed by XPS analyses, and the surface is less hydrophilic. Correlations between oxidation, wettability and nucleation density of the Cu films are discussed.
Tài liệu tham khảo
H. A. Marzouk, J. Y. Kim, J. S. Kim, P. J. Reucroft, R. J. Jacob, J. D. Robertson, and C. Eloi, Thin Solid Films, 249, 22 (1994).
R. Izquierdo, J. Bertomeu, M. Suys, E. Sacher, and M. Meunier, Appl. Surf. Sci., 86, 509 (1995).
M. J. Hampden-Smith, T. T. Kodas, and R. R. Rye, Adv. Mater., 4, 524 (1992).
T.-Y. Chen, C. Combellas, P. Doppelt, F. Kanoufi, and A. Thiebault, Chem. Vapor Deposition, 5, 185 (1999).
M. L. H. ter Heerdt, P. J. Van der Put, A. Goossens, A. D. Kuijpers, and J. Schoonman, Electrochem. Soc. Proc., 97-25, 1524 (1997).
N. L. Jeon and R. G. Nuzzo, Langmuir, 11, 341 (1995).
S. Vidal, F. Maury, A. Gleizes, T.-Y. Chen, and P. Doppelt, J. Physique IV, 9, 791 (1999).
S. Vidal, F. Maury, A. Gleizes, and C. Mijoule, Appl. Surf. Sci., in press.
T. H. Baum, P. Doppelt, J. E. Varsik, and C. M. Reidsema, Electrochem. Soc. Proc., 94-31, 320 (1994).
J. M. Burkstrand, Appl. Phys. Lett., 33, 387 (1978).
R. K. Wells, J. P. S. Badyal, I. W. Drummond, K. S. Robinson, and F. J. Street, Polymer, 34, 3611 (1993).
L. H. Dubois and B. R. Zegarski, J. Electrochem. Soc., 139, 3295 (1992).
A. M. Braun, M.-T. Maurette, and E. Oliveros, Technologie Photochimique, Presses Polytechniques Romandes, Lausanne (1986).
J. F. Rabek, Photodegradation of Polymers, Springer, (1996).
J. M. Hill, E. Karbashewski, A. Lin, M. Strobel, and M. J. Walzak, J. Adhesion Sci. Technol., 9, 1575 (1995).
W. L. Wade, Jr., R. J. Mammone, and M. Binder, J. Appl. Polymer Sci., 43, 1589 (1991).
S. Abisset, F. Maury, R. Feurer, M. Ducarroir, M. Nadal, and M. Andrieux, Thin Solid Films, 315, 179 (1998).
H. Guezenoc, Y. Segui, S. Thery, and K. Asfardjani, J. Adhesion Sci. Technol., 7, 953 (1993).
M. Murahara and M. Okoshi, J. Adhesion Sci. Technol., 9, 1593 (1995).
S.-G. Hong, Polymer Degradation and Stability, 48, 211 (1995).
F. Kokai, H. Saito, and T. Fujioka, J. Appl. Phys., 66, 3252 (1989).
A. G. Shard and J. P. S. Badyal, J. Phys. Chem., 95, 9436 (1991).
R. D. Boyd and J. P. S. Badyal, Macromolecules, 30, 3658 (1997).
E. T. Kang, K. G. Neoh, X. Zhang, K. L. Tan, and D. J. Liaw, Surface Interface Analysis, 24, 51 (1996).
C.-W. Lin, J. Mater. Sci. Lett., 12, 612 (1993).
F. Maury, S. Vidal, and A. Gleizes, Adv. Mater. Optics Electronics, in press.