Influence of VOF technique, turbulence model and discretization scheme on the numerical simulation of the non-aerated, skimming flow in stepped spillways

Journal of Hydro-Environment Research - Tập 19 - Trang 137-149 - 2018
Arnau Bayon1, Juan Pablo Toro2,3, Fabián A. Bombardelli4, Jorge Matos5, Petra Amparo López-Jiménez6
1Research Institute of Water and Environmental Engineering (IIAMA) , Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain
2Department of Civil Engineering, Universidad Andres Bello, Santiago 8320000, Chile
3Department of Civil and Environmental Engineering, Univ. of California, 2001 Ghausi Hall, One Shields Ave., Davis, CA 95616, USA
4Department of Civil and Environmental Engineering, University of California, Davis, USA
5Department of Civil Engineering, Architecture and Georesources, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
6Department of Hydraulic and Environmental Engineering, Universitat Politècnica de València, Camí de Vera, s/n, 46022 València, Spain

Tài liệu tham khảo

Amador, 2005 Amador, 2006, Characterization of the nonaerated flow region in a stepped spillway by PIV, J. Fluids Eng., 128, 1266, 10.1115/1.2354529 Bayon, 2015, Numerical analysis of hydraulic jumps using OpenFOAM, J. Hydroinformatics, 17, 662, 10.2166/hydro.2015.041 Bayon, 2016, Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump, Environ. Model. Softw., 80, 322, 10.1016/j.envsoft.2016.02.018 Berberović, 2009, Drop impact onto a liquid layer of finite thickness: Dynamics of the cavity evolution, Phys. Rev. E, 79, 036306, 10.1103/PhysRevE.79.036306 Berberovic, E., 2010. Investigation of free-surface flow associated with drop impact: numerical simulations and theoretical modeling (Ph.D. thesis). Technische Universität, Germany. Boes, 2003, Two-phase flow characteristics of stepped spillways, J. Hydraul. Eng., 129, 661, 10.1061/(ASCE)0733-9429(2003)129:9(661) Bombardelli, 2004 Bombardelli, 2001, Computations of curved free surface water flow on spiral concentrators, J. Hydraul. Eng., 127, 629, 10.1061/(ASCE)0733-9429(2001)127:7(629) Bombardelli, 2011, Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped spillways, Environ. Fluid Mech., 11, 263, 10.1007/s10652-010-9188-6 Bradshaw, 1996, Understanding and prediction of turbulent flow, Int. J. Heat Fluid Flow, 18, 45, 10.1016/S0142-727X(96)00134-8 Carvalho, 2009, Physical and numerical investigation of the skimming flow over a stepped spillway, Adv. Water Resour. Hydraul. Eng., 1767, 10.1007/978-3-540-89465-0_304 Carvalho, 2008, Numerical computation of the flow in hydraulic jump stilling basins, J. Hydraul. Res., 46, 739, 10.1080/00221686.2008.9521919 Celik, 2008, Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications, J. Fluids Eng., 130 Chanson, 2002, The hydraulics of stepped chutes and spillways, Can. J. Civ. Eng., 29 Chanson, H., Bung, D., Matos, J., 2015. Stepped spillways and cascades, in Energy Dissipation in Hydraulic Structures. IAHR Monograph, CRC Press, Taylor and Francis Group, Leiden, The Netherlands, H. CHANSON Editor, pp. 45-64 (ISBN 978-1-138-02755-8). (Record at UQeSpace). Felder, 2011, Air–water flow properties in step cavity down a stepped chute, Int. J. Multiph. Flow, 37, 732, 10.1016/j.ijmultiphaseflow.2011.02.009 Ferziger, 2012 FLOW-3D® User Manual, 2016. FLOW-3D User Manual, Flow Science. Frizell, 2013, Cavitation potential of flow on stepped spillways, J. Hydraul. Eng., 139, 630, 10.1061/(ASCE)HY.1943-7900.0000715 Frizell, 2015, Closure to “Cavitation potential of flow on stepped spillways”, J. Hydraul. Eng., 141, 07015009, 10.1061/(ASCE)HY.1943-7900.0001009 Gonzalez, 2004, Interactions between cavity flow and main stream skimming flows: an experimental study, Can. J. Civil Eng., 31, 33, 10.1139/l03-066 Hirt, 1981, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39, 201, 10.1016/0021-9991(81)90145-5 Hunt, 2010, Energy dissipation on flat-sloped stepped spillways: Part 1. Upstream of the inception point, Trans. ASABE, 53, 103, 10.13031/2013.29506 Issa, 1985, Solution of the implicitly discretized fluid flow equations by operator-splitting, J. Comput. Phys., 62, 40, 10.1016/0021-9991(86)90099-9 Launder, 1974, Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc, Lett. Heat Mass Transfer, 1, 131, 10.1016/0094-4548(74)90150-7 Matos, 1999 Matos, J., Meireles, I., 2014. Hydraulics of stepped weirs and dam spillways: engineering challenges, labyrinths of research. In: Chanson, H., Toombes, L., (Eds.), Hydraulic Structures and Society – Engineering Challenges and Extremes, The University of Queensland, Brisbane, Australia, Proc. of the 5th IAHR International Symposium on Hydraulic Structures (ISHS2014), 25–27 June 2014, Brisbane, Australia, 30 pp. Meireles, I., 2004. Caracterização do Escoamento Deslizante sobre Turbilhões e Energia Específica Residual em Descarregadores de Cheias em Degraus (M.Sc. thesis). IST, Lisbon, Portugal (in Portuguese). Meireles, 2009, Skimming flow in the nonaerated region of stepped spillways over embankment dams, J. Hydraul. Eng., 135, 685, 10.1061/(ASCE)HY.1943-7900.0000047 Meireles, I., 2011. Hydraulics of stepped chutes: experimental-numerical-theoretical study (Ph.D. thesis). Univ. of Aveiro, Portugal. Meireles, 2012, Skimming, nonaerated flow on stepped spillways over roller compacted concrete dams, J. Hydraul. Eng., 138, 870, 10.1061/(ASCE)HY.1943-7900.0000591 Meireles, 2014, Air entrainment onset in skimming flows on steep stepped spillways: an analysis, J. Hydraul. Res., 52, 375, 10.1080/00221686.2013.878401 Menter, 1993, Zonal two equation k-ω turbulence models for aerodynamic flows, AIAA Paper, 93 OpenFOAM User Guide, 2011. OpenFOAM: The Open Source CFD Toolbox User Guide. The Free Software Foundation Inc. Patankar, 1972, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, J Heat Mass Transfer, 15, 1787, 10.1016/0017-9310(72)90054-3 Renna, 2004 Roache, 2009 Rodriguez, 2004, High-resolution numerical simulation of flow through a highly sinuous river reach, Water Resour. Manage., 18, 177, 10.1023/B:WARM.0000043137.52125.a0 Romagnoli, 2009, Computational simulation of a hydraulic jump (original title, in Spanish: “Simulacion computacional del resalto hidraulico”), Mec. Comput., XXVIII, 1661 Rusche, 2002 Schlichting, 2000 Shih, 1995, A new k-∊ eddy viscosity model for high reynolds number turbulent flows, Comput. Fluids, 24, 227, 10.1016/0045-7930(94)00032-T Sweeney, 2014 Toro, 2016, Characterization of turbulence statistics on the non-aerated skimming flow over stepped spillways: A numerical study, Environ. Fluid Mech., 1 Toro, 2017, Detached eddy simulation of the nonaerated skimming flow over a stepped spillway, J. Hydraul. Eng., 143, 04017032, 10.1061/(ASCE)HY.1943-7900.0001322 Ubbink, 1997 Van Leer, 1977, Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow, J. Comput. Phys., 23, 263, 10.1016/0021-9991(77)90094-8 Witt, 2015, Simulating air entrainment and vortex dynamics in a hydraulic jump, Int. J. Multiph. Flow, 72, 165, 10.1016/j.ijmultiphaseflow.2015.02.012 Yakhot, 1992, Development of turbulence models for shear flows by a double expansion technique, Phys. Fluids Fluid Dyn., 1989–1993, 1510, 10.1063/1.858424 Zhang, 2016, Hydraulics of the developing flow region of stepped spillways. I: physical modeling and boundary layer development, J. Hydraul. Eng. ASCE, 04016015, 10.1061/(ASCE)HY.1943-7900.0001138 Zhang, 2016, Hydraulics of the developing flow region of stepped spillways. II: pressure and velocity fields, J. Hydraul. Eng. ASCE, 04016016, 10.1061/(ASCE)HY.1943-7900.0001136