Influence of Under Sleepers Rubber Mat on Propagation of Vibrations from a Railway Track Lying on a Semi-Infinite Soft Ground

Springer Science and Business Media LLC - Tập 51 - Trang 1195-1208 - 2021
T. Beda1, S. Charif D’Ouazzane2, G. E. Ntamack3, A. Nguessong-Nkenfack4, C. A. Moubeké3
1Département de Physique, Faculté Des Sciences, Université de Ngaoundéré, Ngaoundéré, Cameroun
2LMTM, Laboratoire de Mécanique, Thermique et Matériaux, Ecoles Nationale Supérieure des Mines, Rabat, ENSM, Rabat, Maroc
3Groupe de Mécanique et Acoustique, Département de Physique, Faculté des Sciences, Université de Ngaoundéré, Ngaoundéré, Cameroun
4Institut Supérieur Polytechnique de Bansoa, Penka-Michel, Cameroun

Tóm tắt

The damages caused on railway track and on surrounding ground by trains motion’s vibration are since many years a worry for track engineers. In the view to mitigate those negative effects, several proposals and solutions have been implemented in the track. This paper presents significant improvement in track performance resulting from the use of Under Sleepers Rubber mat (USRm) in a ballasted railway track subjected to a dynamic vertical load. Taking into account previous studies on the use of resilient materials under the track component to mitigate railway borne-vibrations and well-advanced studies on the behaviors of rubbery materials: viscoelastic, hyper elastic and those of railways vibratory, settlement, we have analyzed the influence of the Rubber mat inserted between the sleepers and the ballast on the amplitudes of the vibrations generated on the track and the ground by the moving load. By the use of Fourier transform and Gauss-Tchebychev algorithms, vertical displacements in the track and on the ground surface are determined. Results from the study indicate a substantial decrease in vibration amplitudes on the ground surface as much as 20% or 50% respectively at 5 Hz and 40 Hz. Indeed, USRm provides additional protection for the ballast layer by softening wave’s propagation. The new insights will help track engineers to make appropriate decision on the design and usage of USRm.

Tài liệu tham khảo

Ngamkhanong C, Kaewunruen S (2020) Effects of under sleeper pads on dynamic responses of railway pre-stressed concrete sleepers subjected to high intensity impact loads. Eng Struct 214:110604 Jayasuriya C, Indraratna B, Ferreira FB (2020) The use of under sleeper pads to improve the performance of rail tracks. Indian Geotech J 50(2):204–212 Nimbalkar S, Indraratna.B, Dash.S. K and Christie D, (2012) Improved Performance of Railway Ballast under Impact Loads Using Shock Mats. Journal or Geotechnical and Geoenvironmental Engineering 138(3):281–294 Branson.J.M, Dersh.M.S. S, Lima.A.D.O. O, Edwards J.R, Cesar Basutos (2020) Identification of the under-tie pad material characteristics for stress state reduction Proceedings of the institution of Mechanical Engineers. Journal of Rail and Rapid Transit. 234(10); 1227–1237 Indraratna B, Ngo NT, Rujikiatkamjorn C (2017) Improved Performance of Ballasted Rail Tracks Using Plastics and Rubber Inclusions. Proceedia Engineering Transportation Geotechnics and Genecology. Elsevier. 189:207–214 Ngo NT, Indraratna B, Rujikiatkamjorn C (2017) Stabilization of track substructure with Geo-Inclusions-Experimental Evidence and DEM simulation. International Journal of Rail Transportation. https://doi.org/10.1080/23248378.2017.1279085 Schneider P, Bolmsvik R, Nielsen JCO (2015) In Situ Performance of a ballasted railway track with under sleeper pads Proceedings IMech E. Journal of Rail and Rapid Transit. https://doi.org/10.1177/2041301710392479 Holzapfel GA (2010) nonlinear solid mechanics. Wiley, A Continuum Approach for Engineering Mooney M (1940) A theory of large elastic deformation. J. Appl. Phys. 11:582–596 Beda T, Modeling hyperelastic behavior of rubber, (2007) a novel invariant-based and a review of constitutive models. J Polym Sci, Polym Phys 45:1713–1732 Alain Nguessong-Nkenfack T, Beda Z-Q, Peyraut F, HIA, (2016) A hybrid integral approach to model incompressible isotropic hyperelastic material - part 1: Theory. Int J Non-Linear Mech 84:1–11 Meribout F (2010) Analyse de la transmission au sol des vibrations par une structure vibrante. Université Mentouri Constantine, Thèse de doctorat Vu Hieu Nguyen (2002) Comportement dynamique de structures non-linéaires soumises à des charges mobiles. Thèse de doctorat. 21:1–179 Chen WF, Mizuno E (1990) “Nonlinear Analysis in Soil Mechanics: Theory and Implementation’’ Developments in Geotechnical Engineering, 53. Elsevier, New York Mestat (Ph) Degny (E). Chambon (P) et Sekkate-Rhanou (Z), (1990) Détermination des paramètres du modèle Rhéologique des Matériaux du génie civil, 25è colloque du groupe Français de Rhéologie. Grenoble. 24:173–184 Belhadj-Mostefa S (2016) Analyse expérimentale de la distribution des contraintes dynamiques à l’interface sol-fondation. Thèse de doctorat PhD. Université Mentouri Constantine. 15:1–50 Gonnouni MEL (2010) Déformations des sols: consolidation et tassement. Université Hassan II Ain Chock Casablanca. 75:1–24 Kahina C (2015) Etude dynamique des vibrations d’un sol engendrées par une charge en mouvement. Thèse de doctorat Université Mouloud Mammeri De Tizi-Ouzou. 5:1–123 Guo Y, Zhao C, Markine V, Jing G, Zhai W (2020) Calibration for discrete element modelling of railway ballast: A review. Transportation Geotechnics. 82:15–18 Mostefa L (2010) Modélisation analytique d’un rail sur appui continu Analyse paramétrique. Thèse de doctorat université Mentouri Constantine. 9:1–167 Fryba L (1999) Vibration of Solids and Structures Under Moving Loads. Thomas Telford, 3rd Edition. Messioud Salah (1955) Etude de l’interaction sol-fondation 3D sous sollicitations sismiques. Thèse de doctorat, Université 20 Aout Skikda. 71; 10–22 Seghir A (2010) Thèse de doctorat, Université de Bejaia. 6:8–17 Kouroussis G (2009) Modélisation des effets vibratoires du trafic ferroviaire sur l’environnement. Thèse de doctorat, Faculté Polytechnique de Mons (France), pp 1–318 Krylov V, Ferguson C (1993) Calculation of ground vibrations from heavy freight trains. Proceeding of the institute of the acoustics 15(8):59–68 Krylov V (1994) On the theory of railway-induced ground vibrations. Journal of Physic IV 4(C5):769–772 Krylov V (1995) ‘Generation of ground vibrations by superfast trains. Appl Acoust 44:149–164 Krylov V (1997) Spectra of low frequency ground vibrations generated by high-speed trains on layered ground. Journal of low frequency Noise vibration and Active Control 16(4):257–270 Metrikine AV, Dieterman HA (1997) Three-dimensional vibration of a beam on an elastic half space: resonance interaction of vertical, longitudinal and lateral beam waves. J Appl Mech 64:951–956 Koroma SG, Thompson DJ, Hussein MFM, Ntotsios E (2017) A mixed space-time and wavenumber-frequency domain procedure for modelling ground vibration from surface railway tracks. J Sound Vib 21:25–32 Sheng CJC, Jones MP (1999) Ground Vibration generated by a harmonic Load acting on a railway track. J Sound Vib 225(1):3–28 Sheng CJC, Jones MP (1999) Ground Vibration generated by a Load Moving along a railway track. J Sound Vib 228(1):129–156 Benoît Picoux, G. Lefeuve-Mesgouez and D. Le Houédec (2001) Propagation of Vibrations from a Railway Track Lying on a Semi-Infinite Soft Ground. conference paper. Picoux B (2002) Etude théorique et expérimentale de la propagation dans le sol des vibrations émises par le trafic ferroviaire. Thèse de doctorat, Ecole centrale de Nantes. 5:1–156 Picoux B, Rotinat JP, Regoin DL, Houédec, (2003) Prediction and measurements of vibrations from a railway track laying on a peaty ground. J Sound Vib 267:575–589 Benoît Picoux R, Rotinat JP, Regoin DL, Houédec, (2001) Modèle prédictif de propagation des vibrations à partir de véhicules ferroviaires se déplaçant à vitesse constante. 3iéme Assises Nationales sur la qualité de l’environnement sonore. ANGGERS. 41:11–13 Lei Xu, Zhai W (2020) Train-track coupled dynamics analysis: system spatial variation on geometry, physics and mechanics. Rail. Eng. Science. 81:11–19 Ntotsios E, Thompson DJ, Hussein MFM (2019) A comparison of ground vibration due to ballasted and slab tracks. Transportation Geotechnics. 51:85–91 Benoît Picoux, D. Le Houédec (2005) Diagnosis and prediction of vibration from railway trains. soil dynamics and earthquake engineering. 25; 905–921 D.J. Inman (2008)’’Engineering Vibration’’3rd Edition. Upper Saddle River, NJ, Pearson Education. NC Dominique. Le Houédec, G. Lefeuve-Mesgouez and B. Picoux, (2003) Soil structure interaction for Moving loads: Application to railway traffic. In B.B.V Topping (Editor)’Progress in Civil and Structural Engineering Computing ‘Saxe-Coburg publications. Stirlingshire, UK, chapter 12:315–344. https://doi.org/10.4203/csets.10.12 Gaelle. Lefeuve-Mesgouez and D. Le Houédec, (2000) Ground Vibration in the Vicinity of a high-speed moving harmonic strip loads. J Sound Vib 231(5):1289–1309 Jones D, Le Houédec D, Peplow AT, Petyt M (1998) Ground vibration in the vicinity of a moving harmonic rectangular load on a half-space. European Journal of Mechanics/Solids. 17:1 Jones DV, Petyt M (1992) Ground vibration in the vicinity of a strip load: an elastic layer on a rigid foundation. J Sound Vib 152(3):501–515 Jones D, Petyt M (1991) Ground vibration in the vicinity of a strip load: two-dimensional half-space model. J Sound Vib 147(1):155–166 Jones DV, Petyt M (1993) Ground vibration in the vicinity of a Rectangular Load on a Half –Space. J Sound Vib 166(1):141–159