Influence of Total Strain Amplitude on Hydrogen Embrittlement of High Strength Steel

Procedia Materials Science - Tập 8 - Trang 1039-1046 - 2015
Mariano N. Inés1, Carolina A. Asmus1, Graciela A. Mansilla1
1Departamento Metalurgia-DEYTEMA. Facultad Regional San Nicolás, Universidad Tecnológica Nacional. Colón 332, San Nicolás de los Arroyos (2900), Buenos Aires, Argentina.

Tài liệu tham khảo

ASM Handbook, 1987.Fractography.ASM International 12. Asmus, C.A., Inés, M.N., Mansilla, G.A., 2013. Determinación de la desorción térmica y liberación de hidrógeno para un acero de alta resistencia. Presentado en 5to. Congreso Nacional – 4to. Congreso Iberoamericano Hidrógeno y Fuentes Sustentables de Energía – HYFUSEN 2013- Córdoba, Argentina. Hirth, 1980, Effects of Hydrogen on the Properties of Iron and Steel, Metallurgical Transactions A, 11A, 861, 10.1007/BF02654700 Inés, M.N., Mansilla, G.A., 2012. Identificación de los sitios de atrape de hidrógeno en un acero perlítico-ferrítico. Presentado en 2° Reunión Materiales Tecnológicos en Argentina – Matte@r 2012, San Rafael, Mendoza, Argentina. Inés, M.N., Mansilla, G.A., 2012.Trampas irreversibles, su influencia en la fragilización de un acero de alta resistencia. Presentado en 12° Congreso Binacional de Metalurgia y Materiales, CONAMET/SAM 2012, Chile. Inés, 2013, Effect of hydrogen concentration and MnS inclusions on the embrittlement of a high strength steel. Acta Microscopica, 22, 20 Inés, M., Brandaleze, E., 2008. Variables que influyen en la morfología y el comportamiento de las inclusiones de MnS y su relación con la pérdida de ductilidad en caliente de los aceros. Práctica Profesional Supervisada, Carrera Ingeniería Metalúrgica, Universidad Tecnológica Nacional – Facultad Regional San Nicolás. International S tandard ISO 15156-2:2003, Petroleum and Natural Gas Industries. Materials for Use in H2S-Containing Environments in Oil and Gas Production -Part 2: Cracking-Resistant Carbon and Low Alloy Steels, and the Use of Cast Irons. Kim, J.S., Lee, Y.H., Lee, D.L., Park, K-T., Lee, C.S., 2009. Microstructural influences on hydrogen delayed fracture of high strength steels. Materials Science and Engineering A, 505, 105-110. Mansilla, G., Hereñú, S., Brandaleze, E., 2013. Hydrogen effects on the low cycle fatigue of high strength steels. Materials Science and Technology-Accepted for publication, DOI -10.1179/1743284713Y.0000000328. Nagumo, 2001, Function of Hydrogen in Embrittlement of High-strength Steels, ISIJ International, 41, 590, 10.2355/isijinternational.41.590 Novak, 2010, A statiscal, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel, Journal of the Mechanics and Physics of Solids, 58, 206, 10.1016/j.jmps.2009.10.005 Oriani, 1974, Equilibrium aspects of hydrogen-induced cracking of steel.ActaMetallurgica, 22, 1065 Schober, 1983, Observation of local hydrogen on nickel surfaces.Metallurgical Transactions A, 14A, 2440 Sims, 1938, Trans. Am. Foundarymen'sAss, 46, 65 Sojka, J., 1997.Evaluation of hydrogen embrittlement of steels used as storage tanks in chemical industry (in Czech). Tech. report Vítkovice, A.S., 1-25. Sozanska, 2001, Examination of hydrogen interaction in carbon steel by means of quantitative microstructural and fracture descriptions, Materials Characterization, 46, 239, 10.1016/S1044-5803(01)00130-9 Timmins, 1997, Solutions to hydrogen attack in steels, Metals Park, OH. American Society for Metals, 107 Underwood, 1986, Quantitative Fractography.Applied Metallography, 8, 101, 10.1007/978-1-4684-9084-8_8 Vlasov, 2006, Structural impurity traps for hydrogen atoms, Int, Journal of Hydrogen Energy, 31, 265, 10.1016/j.ijhydene.2005.04.059