Influence of TiO2 nanostructure size and surface modification on surface wettability and bacterial adhesion

Colloids and Interface Science Communications - Tập 34 - Trang 100220 - 2020
Gaoqi Wang1,2, Ding Weng1, Chaolang Chen1, Lei Chen1, Jiadao Wang1
1State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, PR China
2School of Mechanical Engineering, University of Jinan, Jinan 250022, PR China

Tài liệu tham khảo

Hall-Stoodley, 2004, Bacterial biofilms: from the natural environment to infectious diseases, Nat. Rev. Microbiol., 2, 95, 10.1038/nrmicro821 Beloin, 2014, Novel approaches to combat bacterial biofilms, Curr. Opin. Pharmacol., 18, 61, 10.1016/j.coph.2014.09.005 Quirynen, 1995, The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man, J. Clin. Periodontol., 22, 1, 10.1111/j.1600-051X.1995.tb01765.x Quirynen, 1990, The influence of surface free energy and surface roughness on early plaque formation, J. Clin. Periodontol., 17, 138, 10.1111/j.1600-051X.1990.tb01077.x Bollen, 1996, The influence of abutment surface roughness on plaque accumulation and peri-implant mucositis, Clin. Oral Implants Res., 7, 201, 10.1034/j.1600-0501.1996.070302.x Arango-Santander, 2018, A novel approach to create an antibacterial surface using titanium dioxide and a combination of dip-pen nanolithography and soft lithography, Sci. Rep., 8, 1, 10.1038/s41598-018-34198-w Tesler, 2015, Extremely durable biofouling-resistant metallic surfaces based on electrodeposited nanoporous tungstite films on steel, Nat. Commun., 6, 8649, 10.1038/ncomms9649 Hizal, 2016, Staphylococcal adhesion, detachment and transmission on nanopillared Si surfaces, ACS Appl. Mater. Interfaces, 8, 30430, 10.1021/acsami.6b09437 Shaikh, 2018, Femtosecond laser induced surface modification for prevention of bacterial adhesion on 45S5 bioactive glass, J. Non-Cryst. Solids, 482, 63, 10.1016/j.jnoncrysol.2017.12.019 Wang, 2011, Length-scale mediated differential adhesion of mammalian cells and microbes, Adv. Funct. Mater., 21, 3916, 10.1002/adfm.201100659 Hizal, 2017, Nanoengineered Superhydrophobic surfaces of aluminum with extremely low bacterial Adhesivity, ACS Appl. Mater. Interfaces, 9, 12118, 10.1021/acsami.7b01322 Dou, 2015, Bioinspired hierarchical surface structures with tunable wettability for regulating Bacteria adhesion, ACS Nano, 9, 10664, 10.1021/acsnano.5b04231 Chung, 2007, Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus, Biointerphases., 2, 89, 10.1116/1.2751405 Wang, 2011, Length-scale mediated differential adhesion of mammalian cells and microbes, Adv. Funct. Mater., 21, 3916, 10.1002/adfm.201100659 Liu, 2010, Recent developments in bio-inspired special wettability, Chem. Soc. Rev., 39, 3240, 10.1039/b917112f Fadeeva, 2011, Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation, Langmuir., 27, 3012, 10.1021/la104607g Mahalakshmi, 2011, Enhancing corrosion and biofouling resistance through superhydrophobic surface modification, Curr. Sci., 101, 1328 Bartlet, 2018, Antibacterial activity on superhydrophobic titania nanotube arrays, Colloid. Surface. B., 166, 179, 10.1016/j.colsurfb.2018.03.019 Zhang, 2018, From homogeneous to heterogeneous: a simple approach to prepare polymer brush modified surfaces for anti-adhesion of Bacteria, Colloid. Interfac. Sci. Commun., 23, 21, 10.1016/j.colcom.2018.02.002 Gudipati, 2005, The antifouling and fouling-release Perfomance of Hyperbranched fluoropolymer (HBFP)−poly(ethylene glycol) (PEG) composite coatings evaluated by adsorption of biomacromolecules and the green fouling alga Ulva, Langmuir., 21, 3044, 10.1021/la048015o Quintana, 2014, Sulfobetaine-based polymer brushes in marine environment: is there an effect of the polymerizable group on the antifouling performance?, Colloid. Surface. B., 120, 118, 10.1016/j.colsurfb.2014.04.012 Sousa, 2011, Superhydrophobic poly(L-lactic acid) surface as potential bacterial colonization substrate, AMB Express, 1, 34, 10.1186/2191-0855-1-34 Wu, 2019, Antibacterial behaviors of Cu2O particles with controllable morphologies in acrylic coatings, Appl. Surf. Sci., 465, 279, 10.1016/j.apsusc.2018.09.184 Lu, 2019, A facile dopamine-assisted method for the preparation of antibacterial surfaces based on ag/TiO2 nanoparticles, Appl. Surf. Sci., 481, 1270, 10.1016/j.apsusc.2019.03.174 Shi, 2018, Modification of antibacterial ZnO Nanorods with CeO2 nanoparticles: role of CeO2 in impacting morphology and antibacterial activity, Colloid. Interfac. Sci. Commun., 26, 32, 10.1016/j.colcom.2018.08.002 Qian, 2019, Mussel-inspired superhydrophilic surface with enhanced antimicrobial properties under immersed and atmospheric conditions, Appl. Surf. Sci., 465, 267, 10.1016/j.apsusc.2018.09.173 Zhang, 2019, Advanced titanium dioxide-polytetrafluorethylene (TiO2-PTFE) nanocomposite coatings on stainless steel surfaces with antibacterial and anti-corrosion properties, Appl. Surf. Sci., 490, 231, 10.1016/j.apsusc.2019.06.070 Muhammad, 2018, Fabrication of visible light-induced antibacterial and self-cleaning cotton fabrics using manganese doped TiO2 nanoparticles, ACS Appl. Bio Mater., 1, 1154, 10.1021/acsabm.8b00357 Ma, 2015, Superior antibacterial activity of Fe3O4-TiO2 nanosheets under solar light, ACS Appl. Mater. Interfaces, 7, 21875, 10.1021/acsami.5b06264 Xing, 2012, Effect of TiO2 nanoparticles on the antibacterial and physical properties of polyethylene-based film, Prog. Org. Coat., 73, 219, 10.1016/j.porgcoat.2011.11.005 Heim, 2014, An intramolecular lock facilitates folding and stabilizes the tertiary structure of Streptococcus mutans adhesin P1, P. Natl. Acad. Sci. Usa., 111, 15746, 10.1073/pnas.1413018111 Klein, 2015, Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms, Front. Cell. Infect. Microbiol., 5, 10, 10.3389/fcimb.2015.00010 Das, 2011, Role of eDNA on the adhesion forces between Streptococcus mutans and substratum surfaces: influence of ionic strength and substratum hydrophobicity, Langmuir., 27, 10113, 10.1021/la202013m Cross, 2007, Nanomechanical properties of glucans and associated cell-surface adhesion of Streptococcus mutans probed by atomic force microscopy under in situ conditions, Microbiol., 153, 3124, 10.1099/mic.0.2007/007625-0 Naghili, 2013, Validation of drop plate technique for bacterial enumeration by parametric and nonparametric tests, Vet. Res. Forum an Int. Q. J., 4, 179 Vatanpour, 2012, TiO2 embedded mixed matrix PES nanocomposite membranes: influence of different sizes and types of nanoparticles on antifouling and performance, Desalination., 292, 19, 10.1016/j.desal.2012.02.006 Lafuma, 2003, Superhydrophobic states, Nat. Mater., 2, 457, 10.1038/nmat924 Satou, 1988, Streptococcal adherence on various restorative materials, J. Dent. Res., 67, 588, 10.1177/00220345880670031301 Poggio, 2009, Adhesion of Streptococcus Mutans to different restorative materials, Int. J. Artif. Organs., 32, 671, 10.1177/039139880903200917