Influence of TiO2 nanostructure size and surface modification on surface wettability and bacterial adhesion
Tài liệu tham khảo
Hall-Stoodley, 2004, Bacterial biofilms: from the natural environment to infectious diseases, Nat. Rev. Microbiol., 2, 95, 10.1038/nrmicro821
Beloin, 2014, Novel approaches to combat bacterial biofilms, Curr. Opin. Pharmacol., 18, 61, 10.1016/j.coph.2014.09.005
Quirynen, 1995, The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man, J. Clin. Periodontol., 22, 1, 10.1111/j.1600-051X.1995.tb01765.x
Quirynen, 1990, The influence of surface free energy and surface roughness on early plaque formation, J. Clin. Periodontol., 17, 138, 10.1111/j.1600-051X.1990.tb01077.x
Bollen, 1996, The influence of abutment surface roughness on plaque accumulation and peri-implant mucositis, Clin. Oral Implants Res., 7, 201, 10.1034/j.1600-0501.1996.070302.x
Arango-Santander, 2018, A novel approach to create an antibacterial surface using titanium dioxide and a combination of dip-pen nanolithography and soft lithography, Sci. Rep., 8, 1, 10.1038/s41598-018-34198-w
Tesler, 2015, Extremely durable biofouling-resistant metallic surfaces based on electrodeposited nanoporous tungstite films on steel, Nat. Commun., 6, 8649, 10.1038/ncomms9649
Hizal, 2016, Staphylococcal adhesion, detachment and transmission on nanopillared Si surfaces, ACS Appl. Mater. Interfaces, 8, 30430, 10.1021/acsami.6b09437
Shaikh, 2018, Femtosecond laser induced surface modification for prevention of bacterial adhesion on 45S5 bioactive glass, J. Non-Cryst. Solids, 482, 63, 10.1016/j.jnoncrysol.2017.12.019
Wang, 2011, Length-scale mediated differential adhesion of mammalian cells and microbes, Adv. Funct. Mater., 21, 3916, 10.1002/adfm.201100659
Hizal, 2017, Nanoengineered Superhydrophobic surfaces of aluminum with extremely low bacterial Adhesivity, ACS Appl. Mater. Interfaces, 9, 12118, 10.1021/acsami.7b01322
Dou, 2015, Bioinspired hierarchical surface structures with tunable wettability for regulating Bacteria adhesion, ACS Nano, 9, 10664, 10.1021/acsnano.5b04231
Chung, 2007, Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus, Biointerphases., 2, 89, 10.1116/1.2751405
Wang, 2011, Length-scale mediated differential adhesion of mammalian cells and microbes, Adv. Funct. Mater., 21, 3916, 10.1002/adfm.201100659
Liu, 2010, Recent developments in bio-inspired special wettability, Chem. Soc. Rev., 39, 3240, 10.1039/b917112f
Fadeeva, 2011, Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation, Langmuir., 27, 3012, 10.1021/la104607g
Mahalakshmi, 2011, Enhancing corrosion and biofouling resistance through superhydrophobic surface modification, Curr. Sci., 101, 1328
Bartlet, 2018, Antibacterial activity on superhydrophobic titania nanotube arrays, Colloid. Surface. B., 166, 179, 10.1016/j.colsurfb.2018.03.019
Zhang, 2018, From homogeneous to heterogeneous: a simple approach to prepare polymer brush modified surfaces for anti-adhesion of Bacteria, Colloid. Interfac. Sci. Commun., 23, 21, 10.1016/j.colcom.2018.02.002
Gudipati, 2005, The antifouling and fouling-release Perfomance of Hyperbranched fluoropolymer (HBFP)−poly(ethylene glycol) (PEG) composite coatings evaluated by adsorption of biomacromolecules and the green fouling alga Ulva, Langmuir., 21, 3044, 10.1021/la048015o
Quintana, 2014, Sulfobetaine-based polymer brushes in marine environment: is there an effect of the polymerizable group on the antifouling performance?, Colloid. Surface. B., 120, 118, 10.1016/j.colsurfb.2014.04.012
Sousa, 2011, Superhydrophobic poly(L-lactic acid) surface as potential bacterial colonization substrate, AMB Express, 1, 34, 10.1186/2191-0855-1-34
Wu, 2019, Antibacterial behaviors of Cu2O particles with controllable morphologies in acrylic coatings, Appl. Surf. Sci., 465, 279, 10.1016/j.apsusc.2018.09.184
Lu, 2019, A facile dopamine-assisted method for the preparation of antibacterial surfaces based on ag/TiO2 nanoparticles, Appl. Surf. Sci., 481, 1270, 10.1016/j.apsusc.2019.03.174
Shi, 2018, Modification of antibacterial ZnO Nanorods with CeO2 nanoparticles: role of CeO2 in impacting morphology and antibacterial activity, Colloid. Interfac. Sci. Commun., 26, 32, 10.1016/j.colcom.2018.08.002
Qian, 2019, Mussel-inspired superhydrophilic surface with enhanced antimicrobial properties under immersed and atmospheric conditions, Appl. Surf. Sci., 465, 267, 10.1016/j.apsusc.2018.09.173
Zhang, 2019, Advanced titanium dioxide-polytetrafluorethylene (TiO2-PTFE) nanocomposite coatings on stainless steel surfaces with antibacterial and anti-corrosion properties, Appl. Surf. Sci., 490, 231, 10.1016/j.apsusc.2019.06.070
Muhammad, 2018, Fabrication of visible light-induced antibacterial and self-cleaning cotton fabrics using manganese doped TiO2 nanoparticles, ACS Appl. Bio Mater., 1, 1154, 10.1021/acsabm.8b00357
Ma, 2015, Superior antibacterial activity of Fe3O4-TiO2 nanosheets under solar light, ACS Appl. Mater. Interfaces, 7, 21875, 10.1021/acsami.5b06264
Xing, 2012, Effect of TiO2 nanoparticles on the antibacterial and physical properties of polyethylene-based film, Prog. Org. Coat., 73, 219, 10.1016/j.porgcoat.2011.11.005
Heim, 2014, An intramolecular lock facilitates folding and stabilizes the tertiary structure of Streptococcus mutans adhesin P1, P. Natl. Acad. Sci. Usa., 111, 15746, 10.1073/pnas.1413018111
Klein, 2015, Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms, Front. Cell. Infect. Microbiol., 5, 10, 10.3389/fcimb.2015.00010
Das, 2011, Role of eDNA on the adhesion forces between Streptococcus mutans and substratum surfaces: influence of ionic strength and substratum hydrophobicity, Langmuir., 27, 10113, 10.1021/la202013m
Cross, 2007, Nanomechanical properties of glucans and associated cell-surface adhesion of Streptococcus mutans probed by atomic force microscopy under in situ conditions, Microbiol., 153, 3124, 10.1099/mic.0.2007/007625-0
Naghili, 2013, Validation of drop plate technique for bacterial enumeration by parametric and nonparametric tests, Vet. Res. Forum an Int. Q. J., 4, 179
Vatanpour, 2012, TiO2 embedded mixed matrix PES nanocomposite membranes: influence of different sizes and types of nanoparticles on antifouling and performance, Desalination., 292, 19, 10.1016/j.desal.2012.02.006
Lafuma, 2003, Superhydrophobic states, Nat. Mater., 2, 457, 10.1038/nmat924
Satou, 1988, Streptococcal adherence on various restorative materials, J. Dent. Res., 67, 588, 10.1177/00220345880670031301
Poggio, 2009, Adhesion of Streptococcus Mutans to different restorative materials, Int. J. Artif. Organs., 32, 671, 10.1177/039139880903200917