Influence of Surfactant-Based Polymer as Micellar Carrier on Dissolution Properties and Oral Bioavailability of Abiraterone Acetate
Tóm tắt
Abiraterone acetate is a novel antiandrogen drug indicated for prostate cancer. However, it suffers from low bioavailability owing to poor dissolution properties. The present work was aimed to develop abiraterone acetate nano-micelles to improve its dissolution properties and oral bioavailability. Film hydration method was employed to fabricate the abiraterone acetate nano-micelles. Impact of various variables on the formulation of abiraterone acetate nano-micelles were studied in the preliminary trials. Central composite design was employed with independent variables identified in the preliminary studies, viz. X1- Stirring speed and X2- Stirring time. Drug release studies were carried out to check the change in dissolution properties of abiraterone acetate nano-micelles as compared to pure drug. In vivo animal studies were carried out to check the pharmacokinetic parameters. Drug physical alterations caused by nano-micellization were analyzed by solid state characterization (FTIR, DSC, XRD and SEM) experiments. Accelerated stability studies for six months was carried out on the optimized formulation. Results demonstrated influence of various process variables on particle size of abiraterone acetate nano-micelles. In vitro dissolution showed an increase in drug release rate from nano-micelles as compared to pure drug dispersion. Abiraterone acetate nano-micelle’s oral bioavailability significantly improved by 32-fold. Accelerated stability studies of the optimized formulation suggested stability of the nano-micelles for at least six-month time. Thus, dissolution properties and oral bioavailability of abiraterone acetate was enhanced by formulating nano-micelles.
Tài liệu tham khảo
Stegemann, S. (2018). Patient centric drug product design in modern drug delivery as an opportunity to increase safety and effectiveness. Expert Opinion On Drug Delivery, 15(6), 619–627. https://doi.org/10.1080/17425247.2018.1472571
van der Merwe, J., Steenekamp, J., Steyn, D., & Hamman, J. (2020). The role of functional excipients in solid oral dosage forms to Overcome Poor Drug Dissolution and Bioavailability. Pharmaceutics, 12(5), 393. https://doi.org/10.3390/pharmaceutics12050393
Alshehri, S., Imam, S. S., Altamimi, M. A., Hussain, A., Shakeel, F., Elzayat, E., Mohsin, K., Ibrahim, M., & Alanazi, F. (2020). Enhanced dissolution of Luteolin by Solid Dispersion prepared by different methods: Physicochemical characterization and antioxidant activity. ACS Omega, 5(12), 6461–6471. https://doi.org/10.1021/acsomega.9b04075
Sid, D., Baitiche, M., Elbahri, Z., Djerboua, F., Boutahala, M., Bouaziz, Z., & Le Borgne, M. (2021). Solubility enhancement of mefenamic acid by inclusion complex with β-cyclodextrin: In silico modelling, formulation, characterisation, and in vitro studies. Journal Of Enzyme Inhibition And Medicinal Chemistry, 36(1), 605–617. https://doi.org/10.1080/14756366.2020.1869225
Aghrbi, I., Fülöp, V., Jakab, G., Kállai-Szabó, N., Balogh, E., & Antal, I. (2021). Nanosuspension with improved saturated solubility and dissolution rate of cilostazol and effect of solidification on stability. Journal of Drug Delivery Science and Technology, 61, 102165. https://doi.org/10.1016/j.jddst.2020.102165
Patel, D. S., Pipaliya, R. M., & Surti, N. (2015). Liquisolid Tablets for Dissolution Enhancement of a Hypolipidemic Drug. Indian Journal of Pharmaceutical Sciences, 77(3), 290–298. https://doi.org/10.4103/0250-474x.159618
Eesam, S., Bhandaru, J. S., Naliganti, C., Bobbala, R. K., & Akkinepally, R. R. (2020). Solubility enhancement of carvedilol using drug–drug cocrystallization with hydrochlorothiazide. Future Journal of Pharmaceutical Sciences, 6, 77. https://doi.org/10.1186/s43094-020-00083-5
Dalal, L., Allaf, A. W., & El-Zein, H. (2021). Formulation and in vitro evaluation of self-nanoemulsifying liquisolid tablets of furosemide. Scientific Reports, 11(1), 1315. https://doi.org/10.1038/s41598-020-79940-5
Ghadi, R., & Dand, N. (2017). BCS class IV drugs: Highly notorious candidates for formulation development. Journal Of Controlled Release: Official Journal Of The Controlled Release Society, 248, 71–95. https://doi.org/10.1016/j.jconrel.2017.01.014
Torchilin, V. P. (2001). Structure and design of polymeric surfactant-based drug delivery systems. Journal Of Controlled Release: Official Journal Of The Controlled Release Society, 73(2–3), 137–172. https://doi.org/10.1016/s0168-3659(01)00299-1
Dugar, R. P., Gajera, B. Y., & Dave, R. H. (2016). Fusion method for solubility and dissolution rate enhancement of ibuprofen using block copolymer poloxamer 407. An Official Journal of the American Association of Pharmaceutical Scientists, 17(6), 1428–1440. https://doi.org/10.1208/s12249-016-0482-6
Fares, A. R., ElMeshad, A. N., & Kassem, M. A. A. (2018). Enhancement of dissolution and oral bioavailability of lacidipine via pluronic P123/F127 mixed polymeric micelles: Formulation, optimization using central composite design and in vivo bioavailability study. Drug Delivery, 25(1), 132–142. https://doi.org/10.1080/10717544.2017.1419512
Sharif Makhmal Zadeh, B., Esfahani, G., & Salimi, A. (2018). Permeability of ciprofloxacin-loaded polymeric Micelles including Ginsenoside as P-glycoprotein inhibitor through a Caco-2 cells monolayer as an intestinal absorption model. Molecules, 23(8), 1904. https://doi.org/10.3390/molecules23081904
Goo, Y. T., Sa, C. K., Choi, J. Y., Kim, M. S., Kim, C. H., Kim, H. K., & Choi, Y. W. (2021). Development of a solid Supersaturable Micelle of Revaprazan for Improved dissolution and oral bioavailability using Box-Behnken Design. International Journal of Nanomedicine, 16, 1245–1259. https://doi.org/10.2147/IJN.S298450
Caffo, O., Veccia, A., Kinspergher, S., & Maines, F. (2018). Abiraterone acetate and its use in the treatment of metastatic prostate cancer: A review. Future Oncology, 14(5), 431–442. https://doi.org/10.2217/fon-2017-0430
Gartrell, B. A., & Saad, F. (2015). Abiraterone in the management of castration-resistant prostate cancer prior to chemotherapy. Therapeutic Advances In Urology, 7(4), 194–202. https://doi.org/10.1177/1756287215592288
Rehman, Y., & Rosenberg, J. E. (2012). Abiraterone acetate: Oral androgen biosynthesis inhibitor for treatment of castration-resistant prostate cancer. Drug Design, Development And Therapy, 6, 13–18. https://doi.org/10.2147/DDDT.S15850
Solymosi, T., Toth, F., Orosz, J., Basa-Denes, O., Angi, R., Jordan, T., Ötvös, Z., & Glavinas, H. (2018). Solubility measurements at 296 and 310 K and Physicochemical characterization of Abiraterone and Abiraterone acetate. Journal Of Chemical And Engineering Data, 63(12), 4453–4458. https://doi.org/10.1021/acs.jced.8b00566
Gala, U., Miller, D., & Williams, R. O. III. (2020). Improved dissolution and pharmacokinetics of Abiraterone through KinetiSol® Enabled Amorphous Solid Dispersions. Pharmaceutics, 12(4), 357. https://doi.org/10.3390/pharmaceutics12040357
Boleslavská, T., Rychecký, O., Krov, M., Žvátora, P., Dammer, O., Beránek, J., Kozlík, P., Křížek, T., Hořínková, J., Ryšánek, P., Roušarová, J., Kutinová Canová, N., Šíma, M., Slanař, O., & Štěpánek, F. (2020). Bioavailability Enhancement and Food Effect Elimination of Abiraterone acetate by encapsulation in surfactant-enriched oil marbles. American Association Of Pharmaceutical Scientists Journal, 22, 122. https://doi.org/10.1208/s12248-020-00505-5
Schultz, H. B., Wignall, A. D., Thomas, N., & Prestidge, C. A. (2020). Enhancement of abiraterone acetate oral bioavailability by supersaturated-silica lipid hybrids. International Journal Of Pharmaceutics, 582, 119264. https://doi.org/10.1016/j.ijpharm.2020.119264
Ghasemiyeh, P., & Mohammadi-Samani, S. (2018). Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Research in Pharmaceutical Sciences, 13(4), 288–303. https://doi.org/10.4103/1735-5362.235156
Lin, X., Hu, Y., Liu, L., Su, L., Li, N., Yu, J., Tang, B., & Yang, Z. (2018). Physical Stability of Amorphous Solid Dispersions: A physicochemical perspective with thermodynamic, kinetic and environmental aspects. Pharmaceutical Research, 35(6), 125. https://doi.org/10.1007/s11095-018-2408-3
Liu, H., Xu, H., Jiang, Y., Hao, S., Gong, F., Mu, H., & Liu, K. (2015). Preparation, characterization, in vivo pharmacokinetics, and biodistribution of polymeric micellar dimethoxycurcumin for tumor targeting. International Journal of Nanomedicine, 10, 6395–6410. https://doi.org/10.2147/IJN.S91961
Aziz, D. E., Abdelbary, A. A., & Elassasy, A. I. (2018). Implementing central composite design for developing transdermal diacerein-loaded niosomes: ex vivo permeation and in vivo deposition. Current Drug Delivery, 15(9), 1330–1342. https://doi.org/10.2174/1567201815666180619105419
Bodas, D. S., & Ige, P. P. (2019). Central composite rotatable design for optimization of budesonide-loaded cross-linked chitosan-dextran sulfate nanodispersion: Characterization, in vitro diffusion and aerodynamic study. Drug Development And Industrial Pharmacy, 45(7), 1193–1204. https://doi.org/10.1080/03639045.2019.1606823
Vuppalapati, L., Cherukuri, S., Neeli, V., Yeragamreddy, P. R., & Kesavan, B. R. (2016). Application of Central Composite Design in optimization of Valsartan Nanosuspension to enhance its Solubility and Stability. Current Drug Delivery, 13(1), 143–157. https://doi.org/10.2174/1567201812666150724094358
Mahajan, H. S., & Patil, P. H. (2020). Central composite design-based optimization of lopinavir vitamin E-TPGS micelle: In vitro characterization and in vivo pharmacokinetic study. Colloids And Surfaces. B, Biointerfaces, 194, 111149. https://doi.org/10.1016/j.colsurfb.2020.111149
Salimi, A., Sharif Makhmal Zadeh, B., & Kazemi, M. (2019). Preparation and optimization of polymeric micelles as an oral drug delivery system for deferoxamine mesylate: In vitro and ex vivo studies. Research in Pharmaceutical Sciences, 14(4), 293–307. https://doi.org/10.4103/1735-5362.263554
Bao, Y., Deng, Q., Li, Y., & Zhou, S. (2018). Engineering docetaxel-loaded micelles for non-small cell lung cancer: A comparative study of microfluidic and bulk nanoparticle preparation. RSC Advances, 2018, 31950–31966. https://doi.org/10.1039/C8RA04512G
Reddy, B. J. C., & Sarada, N. C. (2016). Development and validation of a novel RP-HPLC method for stability-indicating assay of abiraterone acetate. Journal Of Liquid Chromatography & Related Technologies, 39(7), 354–363. https://doi.org/10.1080/10826076.2016.1163500
Xia, H. J., Zhang, Z. H., Jin, X., Hu, Q., Chen, X. Y., & Jia, X. B. (2013). A novel drug-phospholipid complex enriched with micelles: Preparation and evaluation in vitro and in vivo. International Journal of Nanomedicine, 8, 545–554. https://doi.org/10.2147/IJN.S39526
Silva, Y. R. E., & Grigera, J. R. (2015). Micelle stability in water under a range of pressures and temperatures; do both have a common mechanism? RSC Advances, 5, 70005–70009. https://doi.org/10.1039/c5ra09377e
Abdelbary, G., & Makhlouf, A. (2014). Adoption of polymeric micelles to enhance the oral bioavailability of dexibuprofen: Formulation, in-vitro evaluation and in-vivo pharmacokinetic study in healthy human volunteers. Pharmaceutical Development and Technology, 19(6), 717–727. https://doi.org/10.3109/10837450.2013.823994
Szafraniec, J., Antosik, A., Knapik-Kowalczuk, J., Chmiel, K., Kurek, M., Gawlak, K., Odrobińska, J., Paluch, M., & Jachowicz, R. (2019). The self-assembly phenomenon of poloxamers and its effect on the dissolution of a poorly Soluble Drug from Solid Dispersions obtained by Solvent Methods. Pharmaceutics, 11(3), 130. https://doi.org/10.3390/pharmaceutics11030130
Li, G., Lu, Y., Fan, Y., Ning, Q., & Li, W. (2020). Enhanced oral bioavailability of magnolol via mixed micelles and nanosuspensions based on Soluplus®-Poloxamer 188. Drug Delivery, 27(1), 1010–1017. https://doi.org/10.1080/10717544.2020.1785582
Jin, G., Ngo, H. V., Cui, J. H., Wang, J., Park, C., & Lee, B. J. (2021). Role of surfactant micellization for enhanced dissolution of Poorly Water-Soluble Cilostazol using Poloxamer 407-Based solid dispersion via the Anti-Solvent Method. Pharmaceutics, 13(5), 662. https://doi.org/10.3390/pharmaceutics13050662
Khan, A., Iqbal, Z., Shah, Y., Ahmad, L., Ismail, Ullah, Z., & Ullah, A. (2015). Enhancement of dissolution rate of class II drugs (hydrochlorothiazide); a comparative study of the two novel approaches; solid dispersion and liqui-solid techniques. Saudi Pharmaceutical Journal, 23(6), 650–657. https://doi.org/10.1016/j.jsps.2015.01.025
Krstić, M., Ražić, S., Vasiljević, D., Spasojević, D., & Ibrić, S. (2015). Application of experimental design in the examination of the dissolution rate of carbamazepine from formulations. Characterization of the optimal formulation by DSC, TGA, FT-IR and PXRD analysis. Journal Of The Serbian Chemical Society, 80(2), 209–222. https://doi.org/10.2298/JSC030814114K
Nanaki, S., Eleftheriou, R. M., Barmpalexis, P., Kostoglou, M., Karavas, E., & Bikiaris, D. (2019). Evaluation of dissolution enhancement of aprepitant drug in ternary pharmaceutical solid dispersions with Soluplus® and poloxamer 188 prepared by melt mixing. Science, 1(2), 48. https://doi.org/10.3390/sci1020048