Influence of Sheet Metal Pre-forming on Edge Crack Sensitivity using an AHSS Steel Grade

International Journal of Material Forming - Tập 15 - Trang 1-11 - 2022
M. Feistle1, A. Kindsmüller1, I. Pätzold1, R. Golle1, W. Volk1
1Chair of Metal Forming and Casting, Technical University of Munich, Garching, Germany

Tóm tắt

Especially in the automotive sector, high-strength sheet materials are processed in the manufacturing industry. These steels often show a pronounced sensitivity to edge cracks. Because of this, many edge crack testing methods for a wide variety of stress conditions have been developed to describe the edge crack sensitivity of a material. Only the hole expansion test according to ISO 16630 has been standardized. However, the standardization has some gaps in the process description, which has resulted in test modifications. Another disadvantage is the dependence of the results on the machine operator. In the past, the influence of the shear cutting parameters die clearance, cutting edge geometry, and type of cutting line on the edge crack sensitivity was only calculated for undeformed sheet materials. Not only are shear cutting operations carried out on undeformed sheet blanks in the context of the manufacturing of sheet metal components, but more and more pre-formed sheets are mechanically separated and subsequently further formed. Therefore, it is essential to consider the influence of the type and amount of pre-forming introduced on the sensitivity of a material to edge cracks. The discrete types of pre-forming, uniaxial tension, plane strain, and equi-biaxial stretch forming were introduced to sheet metal blanks using dual-phase steel. The Edge-Fracture-Tensile-Test was used to identify the residual formability of the undeformed and pre-formed specimens. The Edge-Crack-Sensitivity-Factor $${K}_{\mathrm{ec}}$$ , which can be used to predict edge cracks in a finite element forming simulation, was determined from the recorded major strains for selected parameter configurations.

Tài liệu tham khảo

Doege E, Behrens BA (2010) Handbuch Umformtechnik. Grundlagen, Technologien, Maschinen. 2. Aufl. s.l.: Springer-Verlag (VDI-Buch). https://doi.org/10.1007/978-3-642-04249-2. http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10382632. Accessed 18 Apr 2019 Lange K (Hg.) (1990) Umformtechnik Band 3: Blechbearbeitung. Handbuch für Industrie und Wissenschaft. 2., völlig neubearb. Aufl. Berlin: Springer Stahlinstitut VDEh. SEP 1520:1998 (1998) Mikroskopische Prüfung der Carbidausbildung in Stählen mit Bildreihen. Berlin, Heidelberg: Beuth Verlag GmbH; Verl. Stahleisen GmbH Jahrbuch Stahl. Werkstoffausschuss Stahlinstitut VDEh, Europäischer Ringversuch für den Lochaufweitungsversuch nach ISO 16630, 2012. Düsseldorf: Verl. Stahleisen GmbH. ISBN 978-3514007901. Deutsches Institut für Normung e. V. DIN 8584–5:2003 (2003) Fertigungsverfahren Zugdruckumformen - Teil 5: Kragenziehen; Einordnung, Unterteilung, Begriffe. Berlin, Heidelberg: Beuth Verlag GmbH Liewald M, Gall M (2013) Experimental investigation of the influence of shear cutting parameters on the edge crack sensitivity of dual phase steels. Hg. v. International Deep-Drawing Research Group (32). http://www.iddrg.com/mm/13/C_36_13.pdf. Accessed 18 Apr 2018 Golovashchenko SF (2008) Quality of Trimming and its Effect on Stretch Flanging of Automotive Panels. Journal of Materials Engineering and Performance, 17(3). https://doi.org/10.1007/s11665-008-9220-x World Steel Association (2005) Advanced High Strength Steel (AHSS) Application Guidelines. http://observatorio.aimme.es/otea_document.asp?id=357&n=1. Accessed 26 Apr 2018 Dunand M, Mohr D (2010) Ductile Fracture of TRIP780 Sheets under Multi-axial Loading. In: Numiform 2010, Proceedings of the 10th International Conferecne. https://doi.org/10.1063/1.3457532 Dykeman J, Malcolm S, Yan B, Chintamani J, Huang G, Ramisetti N, Zhu H (2011) Characterization of Edge Fracture in Various Types of Advanced High Strength Steel. In: SAE Technical Paper Series. SAE 2011 World Congress & Exhibition, APR. 12, 2011: SAE International400 Commonwealth Drive, Warrendale, PA, United States (SAE Technical Paper Series) Feistle M, Krinninger M, Pätzold I, Volk W (2015) Edge-Fracture-Tensile-Test. In: A. Erman Tekkaya, Werner Homberg und Alexander Brosius (Hg.): 60 Excellent Inventions in Metal Forming. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 193–198 Sartkulvanich, P., Altan, T., 2008. The Ohio State University. Examining edge cracking in hole flanging of AHSS. Part IV: Sheared edge stretching [23.04.2018]. https://ercnsm.osu.edu/sites/ercnsm.osu.edu/files/uploads/S_blank/620-8.pdf. Larour, P., Pauli, H., Freudenthaler, J., Gruensteidl, A., 2011. International Deep Drawing Research Group. Alternative stretch flangeability characterisation methods for AHSS steel grades [23.04.2018]. http://www.iddrg.com/mm/11/C_13_11.pdf. Mori, K.-I., Abe, Y., Suzui, Y., 2010. Improvement of stretch flangeability of ultra high strength steel sheet by smoothing of sheared edge. Journal of Materials Processing Technology, 210(4), 653–659. ISSN 09240136. https://doi.org/10.1016/j.jmatprotec.2009.11.014. Matsuno, T., Mizumura, M., Seto, A., Suehiro, M., 2013. Improvement in Hole Expansion Ratio by Chamfered Die Edge. Journal of the Japan Society for Technology of Plasticity, 54(627), 353–357. ISSN 0038–1586. https://doi.org/10.9773/sosei.54.353. Golovashchenko, S.F., 2008. Quality of Trimming and its Effect on Stretch Flanging of Automotive Panels. Journal of Materials Engineering and Performance, 17(3), 316–325. ISSN 1059–9495. https://doi.org/10.1007/s11665-008-9220-x. Shih, H.-C., Hsiung, C.-K., Wendt, B., 2014. Optimal Production Trimming Process for AHSS Sheared Edge Stretchability Improvement. In: SAE 2014 World Congress & Exhi-bition: SAE International400 Commonwealth Drive, Warrendale, PA, United States. https://doi.org/10.4271/2014-01-0994. Deutsches Institut für Normung e. V. DIN EN ISO 6892–1:2017 (2017) Metallische Werkstoffe - Zugversuch - Teil 1: Prüfverfahren bei Raumtemperatur. Berlin, Heidelberg: Beuth Verlag GmbH Feistle M, Golle R, Volk W (2016a) Determining the Influence of Shear Cutting Parameters on the Edge Cracking Susceptibility of High-strength-steels Using the Edge-fracture-tensile-test. Procedia CIRP 41https://doi.org/10.1016/j.procir.2016.01.007 Volk W, Feistle M, Salomon R (2018) Verbesserung der Umformbarkeit scherge-schnittener Schnittflächen von Eisen-Mangan-Blechen durch optimierte Schneidparameter. Formability improvement of shear cut surfaces of iron-manganese sheet metal by optimized cutting parameters. Düsseldorf: Verlag und Vertriebsgesellschaft mbH (Forschung für die Praxis / Forschungsvereinigung Stahl-anwendung e.V. im Stahl-Zentrum, P 1072) Volk W, Hora P (2011) New algorithm for a robust user-independent evaluation of beginning instability for the experimental FLC determination. Int J Mater Form 4 (3). https://doi.org/10.1007/s12289-010-1012-9 Feistle M, Krinninger M, Paetzold I, Stahl J, Golle R, Volk W (2017) Design and conceptualization of a cutting tool to investigate the influence of the shear cutting process on edge crack sensitivity. J. Phys.: Conf. Ser. 896. https://doi.org/10.1088/1742-6596/896/1/012106 Deutsches Institut für Normung e. V. DIN EN 10336:2007–07 (2007) Kontinuierlich schmelztauchveredeltes und elektrolytisch veredeltes Band und Blech aus Mehr-phasenstählen zum Kaltumformen - Technische Lieferbedingungen. Berlin, Heidelberg: Beuth Verlag GmbH Deutsches Institut für Normung e. V. DIN 50602:1985 (1985) Metallographische Prüf-verfahren; Mikroskopische Prüfung von Edel-stählen auf nichtmetallische Einschlüsse mit Bildreihen. Berlin, Heidelberg: Beuth Verlag GmbH Cammann JH (1986) Untersuchungen zur Verschleißminderung an Scherschneid-werkzeugen der Blechbearbeitung durch Einsatz geeigneter Werkstoffe und Beschich-tungen. Dissertation, Technische Hochschule Darmstadt, Institut für Umformtechnik Ramírez G, Mestra A, Casas B, Valls I, Martínez R, Bueno R (2012) Influence of substrate microstructure on the contact fatigue strength of coated cold-work tool steels. Surface and Coatings Technology 206 (13). https://doi.org/10.1016/j.surfcoat.2011.12.012 Deutsches Institut für Normung e. V. DIN EN ISO 4957:2001 (2001) Werkzeugstähle. Berlin, Heidelberg: Beuth Verlag GmbH Graf A, Hosford W (1994) The Influence of Strain-Path Changes on Forming Limit Diagrams of Al 6111 T4. International Journal of Mechanical Sciences. 36(10). ISSN 0020–7403 Volk W, Norz R, Eder M, Hoffmann H (2020) Influence of non-proportional load paths and change in loading direction on the failure mode of sheet metals. CIRP Annals - Manufacturing Technology. 69. ISSN 0007–8506 Volk W, Suh J (2013) Prediction of formability for non-linear deformation history using generalized forming limit concept (GFLC). AIP Conf Proc 1567:556. https://doi.org/10.1063/1.4850035 Le QB, deVries JA, Golovashchenko SF, Bonnen JF (2014) Analysis of sheared edge formability of aluminum. Journal of Materials Processing Technology 214 (4). https://doi.org/10.1016/j.jmatprotec.2013.11.021. Held C, Liewald M, Sindel M (2010) Erweiterte Werkstoffprüfverfahren zur Charakterisierung von Leichtbaublechwerkstoffen im Hinblick auf die Kantenrisssensitivität*. Materials Testing 52(9). https://doi.org/10.3139/120.110166