Influence of Ocular Biometry Parameters on the Predictive Accuracy of IOL Power Formulas in Patients with High Myopia
Tóm tắt
The aim of this study was to investigate the influence of ocular biometry parameters on the predictive accuracy of 10 intraocular lens (IOL) power formulas in patients with high myopia (HM). We analyzed 202 eyes of 202 patients. The ocular biometry was determined preoperatively using an IOLMaster 700. The associations between the biometry parameters and the prediction error (PE) 1 month postoperatively were assessed. HM was defined as an axial length exceeding 26.50 mm. In patients with HM (n = 108), the K6, Emmetropia Verifying Optical (EVO), Olsen, and Barrett Universal II (BUII) formulas had the lowest absolute PEs among the 10 formulas. The ocular biometry parameters were not associated with the PE of K6, EVO, Olsen, or BUII. A longer axial length in HM eyes was associated with myopic outcomes by Kane, Hoffer QST, and VRF and hyperopic outcomes by Holladay 2 and T2. Steeper keratometry, a deeper anterior chamber, and a thicker lens were associated with a hyperopic shift in HM eyes when using VRF, Kane, and Hoffer QST, respectively. In patients without HM (n = 94), there was no difference between the formulas in absolute PE. The significant associations between the biometry parameters and PE in patients with HM were not present in patients without HM. K6, EVO, Olsen, and BUII displayed high accuracy in HM eyes and were not influenced by preoperative biometry parameters. For the remaining formulas, the preoperative keratometry, anterior chamber depth, lens thickness, and axial length were possible error sources underlying an inaccurate IOL power prediction in patients with HM.
Tài liệu tham khảo
Melles RB, Holladay JT, Chang WJ. Accuracy of intraocular lens calculation formulas. Ophthalmology. 2018;125(2):169–78. https://doi.org/10.1016/j.ophtha.2017.08.027.
Darcy K, Gunn D, Tavassoli S, Sparrow J, Kane JX. Assessment of the accuracy of new and updated intraocular lens power calculation formulas in 10 930 eyes from the UK National Health Service. J Cataract Refract Surg. 2020;46(1):2–7. https://doi.org/10.1016/j.jcrs.2019.08.014.
Takahashi H, Tanaka N, Shinohara K, et al. Importance of paravascular vitreal adhesions for development of myopic macular retinoschisis detected by ultra-widefield OCT. Ophthalmology. 2021;128(2):256–65. https://doi.org/10.1016/j.ophtha.2020.06.063.
Takahashi H, Tanaka N, Shinohara K, et al. Ultra-widefield optical coherence tomographic imaging of posterior vitreous in eyes with high myopia. Am J Ophthalmol. 2019;206:102–12. https://doi.org/10.1016/j.ajo.2019.03.011.
Koch DD, Hill W, Abulafia A, Wang L. Pursuing perfection in intraocular lens calculations: I. Logical approach for classifying IOL calculation formulas. J Cataract Refract Surg. 2017;43(6):717–8. https://doi.org/10.1016/j.jcrs.2017.06.006.
Chong EW, Mehta JS. High myopia and cataract surgery. Curr Opin Ophthalmol. 2016;27(1):45–50. https://doi.org/10.1097/icu.0000000000000217.
Haigis W, Lege B, Miller N, Schneider B. Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis. Graefes Arch Clin Exp Ophthalmol. 2000;238(9):765–73. https://doi.org/10.1007/s004170000188.
Zhu X, Li D, Du Y, He W, Lu Y. DNA hypermethylation-mediated downregulation of antioxidant genes contributes to the early onset of cataracts in highly myopic eyes. Redox Biol. 2018;19:179–89. https://doi.org/10.1016/j.redox.2018.08.012.
Bor Z, Osvay K, Rácz B, Szabó G. Group refractive index measurement by Michelson interferometer. Optics Commun. 1990;78(2):109–12. https://doi.org/10.1016/0030-4018(90)90104-2.
De Bernardo M, Cione F, Capasso L, Coppola A, Rosa N. A formula to improve the reliability of optical axial length measurement in IOL power calculation. Sci Rep. 2022;12(1):18845. https://doi.org/10.1038/s41598-022-23665-0.
Lin L, Xu M, Mo E, et al. Accuracy of newer generation IOL power calculation formulas in eyes with high axial myopia. J Refract Surg. 2021;37(11):754–8. https://doi.org/10.3928/1081597x-20210712-08.
Bernardes J, Raimundo M, Lobo C, Murta JN. A comparison of intraocular lens power calculation formulas in high myopia. J Refract Surg. 2021;37(3):207–11. https://doi.org/10.3928/1081597x-20201123-01.
Chu YC, Huang TL, Chang PY, et al. Predictability of 6 intraocular lens power calculation formulas in people with very high myopia. Front Med (Lausanne). 2022;9:762761. https://doi.org/10.3389/fmed.2022.762761.
Zhou D, Sun Z, Deng G. Accuracy of the refractive prediction determined by intraocular lens power calculation formulas in high myopia. Indian J Ophthalmol. 2019;67(4):484–9. https://doi.org/10.4103/ijo.IJO_937_18.
Wan KH, Lam TCH, Yu MCY, Chan TCY. Accuracy and precision of intraocular lens calculations using the new Hill-RBF version 2.0 in eyes with high axial myopia. Am J Ophthalmol. 2019;205:66–73. https://doi.org/10.1016/j.ajo.2019.04.019.
Tan Q, Lin D, Wang L, et al. Comparison of IOL power calculation formulas for a trifocal iol in eyes with high myopia. J Refract Surg. 2021;37(8):538–44. https://doi.org/10.3928/1081597x-20210506-01.
Fuest M, Plange N, Kuerten D, et al. Intraocular lens power calculation for plus and minus lenses in high myopia using partial coherence interferometry. Int Ophthalmol. 2021;41(5):1585–92. https://doi.org/10.1007/s10792-020-01684-y.
Shammas HJ, Taroni L, Pellegrini M, Shammas MC, Jivrajka RV. Accuracy of newer intraocular lens power formulas in short and long eyes using sum-of-segments biometry. J Cataract Refract Surg. 2022. https://doi.org/10.1097/j.jcrs.0000000000000958.
Savini G, Taroni L, Hoffer KJ. Recent developments in intraocular lens power calculation methods-update 2020. Ann Transl Med. 2020;8(22):1553. https://doi.org/10.21037/atm-20-2290.
Jeong J, Song H, Lee JK, Chuck RS, Kwon JW. The effect of ocular biometric factors on the accuracy of various IOL power calculation formulas. BMC Ophthalmol. 2017;17(1):62. https://doi.org/10.1186/s12886-017-0454-y.
Yoon CH, Seol BR, Choi HJ. Effect of pterygium on corneal astigmatism, irregularity and higher-order aberrations: a comparative study with normal fellow eyes. Sci Rep. 2023;13(1):7328. https://doi.org/10.1038/s41598-023-34466-4.
Cione F, De Bernardo M, Gioia M, et al. A no-history multi-formula approach to improve the IOL power calculation after laser refractive surgery: preliminary results. J Clin Med. 2023. https://doi.org/10.3390/jcm12082890.
Zhang D, Yang M, Liu Z, Cai H, Chen X, Zhang C. The effect of implantable collamer Lens V4c on ocular biometric measurements and intraocular lens power calculation based on Pentacam-AXL and IOLMaster 500. BMC Ophthalmol. 2022;22(1):421. https://doi.org/10.1186/s12886-022-02644-z.
Zhang J, Han X, Chen X, et al. Choice of intraocular lens calculation formula for cataract patients with prior pars plana vitrectomy. J Cataract Refract Surg. 2023;49(9):956–63. https://doi.org/10.1097/j.jcrs.0000000000001253.
Frings A, Dulz S, Skevas C, et al. Postoperative refractive error after phacovitrectomy for epiretinal membrane with and without macular oedema. Graefes Arch Clin Exp Ophthalmol. 2015;253(7):1097–104. https://doi.org/10.1007/s00417-015-2948-8.
Savini G, Hoffer KJ, Balducci N, Barboni P, Schiano-Lomoriello D. Comparison of formula accuracy for intraocular lens power calculation based on measurements by a swept-source optical coherence tomography optical biometer. J Cataract Refract Surg. 2020;46(1):27–33. https://doi.org/10.1016/j.jcrs.2019.08.044.
Voytsekhivskyy OV. Development and clinical accuracy of a new intraocular lens power formula (VRF) compared to other formulas. Am J Ophthalmol. 2018;185:56–67. https://doi.org/10.1016/j.ajo.2017.10.020.
Savini G, Hoffer KJ, Barboni P. Influence of corneal asphericity on the refractive outcome of intraocular lens implantation in cataract surgery. J Cataract Refract Surg. 2015;41(4):785–9. https://doi.org/10.1016/j.jcrs.2014.07.035.
Hoffer KJ, Savini G. Update on intraocular lens power calculation study protocols: the better way to design and report clinical trials. Ophthalmology. 2021;128(11):e115–20. https://doi.org/10.1016/j.ophtha.2020.07.005.
Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–91. https://doi.org/10.3758/bf03193146.
Miao A, Tang Y, Zhu X, Qian D, Zheng T, Lu Y. Associations between anterior segment biometry and high axial myopia in 3438 cataractous eyes in the Chinese population. BMC Ophthalmol. 2022;22(1):71. https://doi.org/10.1186/s12886-022-02300-6.
Wei L, He W, Meng J, Qian D, Lu Y, Zhu X. Evaluation of the white-to-white distance in 39,986 Chinese cataractous eyes. Invest Ophthalmol Vis Sci. 2021;62(1):7. https://doi.org/10.1167/iovs.62.1.7.
Bikbov MM, Kazakbaeva GM, Gilmanshin TR, et al. Axial length and its associations in a Russian population: the Ural Eye and Medical Study. PLoS ONE. 2019;14(2):e0211186. https://doi.org/10.1371/journal.pone.0211186.
Jin G, Liu Z, Wang L, Zhu Y, Luo L, Liu Y. Corneal biometric features and their association with axial length in high myopia. Am J Ophthalmol. 2022;238:45–51. https://doi.org/10.1016/j.ajo.2021.11.031.
Liu X, Ye H, Zhang Q, et al. Association between myopia, biometry and occludable angle: the Jiangning Eye Study. PLoS ONE. 2016;11(10):e0165281. https://doi.org/10.1371/journal.pone.0165281.
Meng J, Wei L, He W, Qi J, Lu Y, Zhu X. Lens thickness and associated ocular biometric factors among cataract patients in Shanghai. Eye Vis (Lond). 2021;8(1):22. https://doi.org/10.1186/s40662-021-00245-3.
Satou T, Shimizu K, Tsunehiro S, et al. Relationship between crystalline lens thickness and shape and the identification of anterior ocular segment parameters for predicting the intraocular lens position after cataract surgery. Biomed Res Int. 2019;2019:3458548. https://doi.org/10.1155/2019/3458548.
Scholz K, Messner A, Eppig T, Bruenner H, Langenbucher A. Topography-based assessment of anterior corneal curvature and asphericity as a function of age, sex, and refractive status. J Cataract Refract Surg. 2009;35(6):1046–54. https://doi.org/10.1016/j.jcrs.2009.01.019.
Hashemi H, Nabovati P, Aghamirsalim M, Mahboubipour H, Yekta A, Khabazkhoob M. Corneal asphericity and related factors in the geriatric population: a population-based study. Ophthalmic Physiol Opt. 2021;41(4):691–701. https://doi.org/10.1111/opo.12831.
Zhang Z, Wang J, Niu W, et al. Corneal asphericity and its related factors in 1052 Chinese subjects. Optom Vis Sci. 2011;88(10):1232–9. https://doi.org/10.1097/OPX.0b013e31822717ca.
Satou T, Shimizu K, Tsunehiro S, et al. Development of a new intraocular lens power calculation method based on lens position estimated with optical coherence tomography. Sci Rep. 2020;10(1):6501. https://doi.org/10.1038/s41598-020-63546-y.